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Abstract

The problem of deriving complete aerosol optical properties from sun and sky

radiance measurements is discussed.  The algorithm development is focused on im-

proving aerosol retrieval by including into the inversion procedure the detailed statisti-

cal optimization of the influence of noise.  The optimized inversion algorithm is built on

the principles of statistical estimation: the spectral radiances and various a priori con-

straints on aerosol characteristics are considered as multi-source data that are known

with predetermined accuracy.  The inversion is designed as a search for the best fit of all

considered data by a theoretical model that takes into account the accuracy differences

of the fitted data.  The multivariable fitting is implemented by a stable numerical proce-

dure combining matrix inversion and univariant relaxation.  The algorithm design al-

lows the use of different statistics of experimental noise in the solution optimization, as

well as using various a priori constraints on retrieved aerosol parameters.  This flexibil-

ity in algorithm organization helps to achieve simultaneous and reliable inversions of

complex data sets, which include various radiative, and microstructure characteristics.

The inversion algorithm is adapted for the retrieval of aerosol characteristics
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from radiances measured from ground based sun - sky scanning radiometers used in

the AErosol RObotic NETwork (AERONET).  The aerosol size distribution and complex

refractive index together with aerosol phase function and single scattering albedo are

retrieved from the spectral measurements of direct and diffuse radiation.  The aerosol

particles are modeled as homogeneous spheres.  The atmospheric radiative transfer

modeling is implemented with well-established publicly available radiative transfer

codes.  The retrieved refractive indices can be wavelength dependent, however the ex-

tended smoothness constraints are applied to both retrieved size distributions and the

spectral dependence of refractive index.  The positive effects of noise statistic optimiza-

tion on the retrieval results as well as the importance of applying a priori constraints are

discussed in detail for the retrieval of both aerosol size distribution and complex refrac-

tive index.  The results of numerical tests together with examples of experimental data

inversions are presented.

1. Introduction

Currently there are numerous studies focused on measuring and interpreting

aerosol optical properties.  Especially high expectations are associated with satellite and

ground based remote sensing (e.g., see King et al. [1999], Kaufman et al. [1997]); how-

ever, not every required radiative characteristic can be measured remotely.  Corre-

spondingly, a core aspect of remote sensing is the inversion procedure, whereby aero-

sol optical and radiative characteristics are derived from the remote sensing measure-

ments.  In the past three decades, a number of inversion algorithms have been pro-

posed for interpreting the measured radiative characteristics of the cloud free atmos-

phere.  For example, the codes of King et al. [1978], Nakajima et al. [1983, 1996] and

Wang and Gordon [1993] for deriving aerosol optical properties from atmospheric radi-

ances have been established.  These codes differ in the set of retrieved aerosol parame-

ters and/or set of required input radiative characteristics.  The present paper describes a
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new algorithm that retrieves an extended set of aerosol parameters from multi-angular

and multi-spectral measurements of atmospheric radiances.  The purpose is to maxi-

mize the retrieved aerosol information by inverting simultaneously all available meas-

urements of atmospheric radiances.  Namely, in the present paper we consider the si-

multaneous retrieval of aerosol particle size distribution and complex refractive index

from spectral optical thickness measurements combined with the angular distribution

of sky radiance measured at different wavelengths.  This retrieval approach is consis-

tent with the methods developed by King et al. [1978] and Nakajima et al. [1983,1996] for

retrieving the particle size distribution of aerosol in the total atmospheric column.  The

method of King et al. inverts spectral measurements of optical thickness only, whereas

the method of Nakajima et al. inverts the angular distribution of sky radiance (with or

without spectral optical thickness).  Both methods model aerosol particles as homoge-

neous spheres with refractive indices assumed a priori.  The concepts for determining

aerosol particle refractive index from multi-angular radiance measurements were de-

veloped by Wendish and von Hoyningen-Huene [1994] and Yamasoe et al. [1998].  These

methods are based on the principle of partial separation of the effects of refractive index

and size distribution on the angular variability of sky radiance.  Our approach is signifi-

cantly different from earlier studies in that we implement retrieval via simultaneous fit-

ting of radiances measured in the entire available angular and spectral range.  Such an

approach should provide higher retrieval accuracy through adoption of sophisticated

mathematical procedures.

The present paper addresses the simultaneous retrieval of a large number of sig-

nificantly different parameters from multi-source data.  For example, direct sun and dif-

fuse sky radiance are measured by sensors with different sensitivities and the accuracy

requirements on measurements of direct sun radiation and diffuse sky radiance are

rather different.  Such accuracy differences should be taken into account when making

multi-source data compatible.  Similarly, the aerosol particle size distribution and com-
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plex refractive index are characteristics that are very different in nature.  Correspond-

ingly, the design of an algorithm for retrieving these characteristics should congruously

rationalize the differences in units, ranges of variability, etc.

Developing any inversion algorithm demands two kinds of effort from the de-

veloper.  First of all, accurate forward modeling of measured atmospheric characteris-

tics is required.  The second necessary component of an inversion algorithm is a formal

numerical procedure that implements a mathematical inverse transformation and that

does not relate to a limited particular application.  In the following sections we will dis-

cuss both of these aspects.

For modeling atmospheric radiances we adopt standardized publicly available

software, therefore leaving open the possibility of easily replacing one code with an-

other as radiative transfer theory advances.  Following this strategy in forward model-

ing, we pursue a similar goal of making the entire algorithm flexible and adjustable.  In

designing the algorithm, we tried to anticipate the possibilities of upgrading forward

modeling codes with new advanced versions and expanding the code applicability for

new applications (e.g., accounting for light polarization, detailed characteristics of sur-

face reflectance, incorporating particle nonsphericity, etc.).

We pursued a similar objective in implementing the numerical inversion trans-

formations in our retrieval algorithm.  However, in contrast to forward modeling, de-

signing a flexible numerical inversion algorithm requires clarification of inversion prin-

ciples.  Indeed, forward models differ mainly in the accuracy of describing a physical

phenomenon and the speed of calculation.  Correspondingly, for practical applications,

one always chooses the most accurate model provided it satisfies the time standards.

Choosing the best inversion method, on the other hand, is a more complicated task, in

that the evaluation of inversion accuracy is an ambiguous question, especially for a case

of the simultaneous retrieval of several variables.  For example, replacing a scalar

model of light scattering by a model accounting for polarization results in doubtless
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improvement in the accuracy of describing any characteristic of scatted light.  In con-

trast, retrieval errors are not so well correlated for different retrieved parameters.  Due

to a change of inversion methods the retrieval accuracy may improve for one parame-

ter but degrade for another parameter.  Correspondingly, the preference between in-

version methods is always rather uncertain.

 Detailed reviews of currently used methods can be found in various books, e.g.

Twomey [1977], Tikhonov and Arsenin [1977], Houghton et al. [1983], Tarantolla [1987].

However, the existence of a variety of different well-established inversion procedures

creates an uncertainty for researchers in understanding how to choose the optimal

technique for inversion implementation.  For example, the widely used book by Press

et al. [1992] proposes a diversity of inversion methods, however it does not direct the

reader with explanations as to which method and why it should be chosen for a par-

ticular application.  Such a situation is partly a result of the fact that most innovations

were proposed under pressure of different specific practical needs and derived in rather

different ways.  In the present paper, we follow the inversion strategy proposed and

refined in the previous studies by Dubovik et al. [1995, 1998a].  This strategy is focused

on clarifying the connection between different inversion methods established in atmos-

pheric optics and unifying the key ideas of these methods in a single inversion proce-

dure.  Correspondingly, this strategy is rather helpful for building optimized and flexi-

ble inversion techniques.  For example, in Sections 3 and 4.2 we outline the important

connections of designed retrieval algorithms with the inversion methods widely

adopted in the application of atmospheric optics and remote sensing, such as the meth-

ods given by Phillips [1962], Twomey [1963, 1977], Tikhonov [1963, 1977], Chahine [1968],

Rodgers [1976], etc.

The effort of algorithm development was initiated under the AERONET (AErosol

RObotic NETwork) project [Holben et al., 1998] with the purpose of meeting the high

requirements of aerosol parameter retrieval accuracy needed for satellite data valida-
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tion and improved understanding of the radiative effects of aerosols.  Therefore, the

discussion of the algorithm design and retrieval accuracy will be focused on the inter-

pretation of radiances measured from AERONET ground based sun - sky scanning ra-

diometers.

2. Forward modeling

The AERONET network provides globally distributed near real time observa-

tions of aerosol spectral optical thickness, aerosol size distributions, etc. in a manner

suitable for integration with satellite data.  This network has been developed to provide

aerosol information from two kinds of ground-based measurements: spectral data of

direct sun radiation extinction (i.e., aerosol optical thickness) and angular distribution of

sky radiance.  An inversion algorithm is required for the retrieval of aerosol size distri-

bution, complex refractive index, single scattering albedo, and phase function.  Below, in

this Section, we discuss the concept of atmospheric radiance modeling, which we em-

ploy in our retrieval algorithm.

2.1 Radiative transfer modeling

The atmospheric sky radiance can be modeled by solving the radiative transfer

equation for a plane-parallel atmosphere.  The angular distribution of diffuse radiation

can be described by:

I F m
m m

m m
P GQ DW Q;

exp exp
; ...l

t t
w t l( ) =

-( ) - -( )[ ]
-

( ) + ( )( )0 0
0 1

0 1
0   

  
    , if q q¹ 0 (1a)

I F m m P GQ DW Q; exp ; ...l t w t l( ) = -( ) ( ) + ( )( )0 0 0 0         , if q q= 0 , (1b)

where I Q;l( ) is the spectral sky-radiance measured at different wavelengths and at dif-

ferent scattering angles Q ; F0 the exoatmospheric flux; DW the view solid angle; q0 the

solar zenith angle; q the observation zenith angle; m the air mass (m0 = 1/cosq0, m1 =

1/cosq); t = text(l) the spectral extinction optical thickness; w0 = w0(l) the single scatter-
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ing albedo; and P(Q;l) the phase function at different wavelengths.  The term G(…) =

G(w0(l)text(l);P(Q;l);A(l)) describes the multiple scattering effects, where A l( ) is the

spectral surface reflectance.  The above equation is written for a homogeneous atmos-

phere, without accounting for polarization effects and for angular independent ground

reflectance (Lambertian approximation).  At present, there are a number of well-

established and publicly available codes to account for multiple scattering in diffuse ra-

diance I Q;l( ).  For example, in our studies we have used two independent discrete or-

dinates codes developed by Nakajima and Tanaka [1988] and Stamnes et al. [1988].

These codes allow for vertical variability of atmospheric characteristics by dividing the

atmosphere into a number of homogeneous layers.  In these models, different optical

thickness, phase function, and single scattering albedo characterize each layer.

The modeling of t l( ), w l0( )  and P Q;l( )  requires consideration of three main

components under cloud-free conditions: gaseous absorption, molecular scattering, and

aerosol scattering and absorption.  These three atmospheric components comprise the

total optical characteristics of an atmospheric layer as follows:

t l t l t l t l t lext
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abs
aer

scat
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where t lext
aer ( ) is the aerosol optical thickness; w l0

aer ( )  the aerosol single scattering al-

bedo; and Paer Q;l( )  the aerosol phase function.  In the considered case of ground-

based measurements of solar radiation, strong gaseous absorption can be avoided by

instrumental design or appropriately accounted for from climatological data, and mo-

lecular scattering can easily be calculated from the surface pressure at the time of the

measurements.  For instance, the specified wavelengths of the four AERONET sky ra-
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diometer spectral channels (440, 670, 870, and 1020 nm) were carefully selected to avoid

strong gaseous absorption [Holben et al., 1998].  Slight ozone absorption is accounted

for from climatological data.  The values of surface reflectance A(l) are also accounted

for a priori, in spite of the fact that A(l) can vary significantly depending on climatologi-

cal and meteorological conditions.  Indeed, uncertainty in a priori knowledge of surface

reflectance A(l) is usually not critical for modeling of downward solar radiation for two

primary reasons.  First, it is expected that values of A(l) can in some cases be obtained

from accompanying measurements of upward radiation.  Second, in most situations,

light propagated from the sun dominates over reflected light in the downward radia-

tion field and accuracy requirements on a priori estimates of A(l) are modest.  Thus, lo-

cal variability of atmospheric radiance I Q;l( ) depends primarily on the optical proper-

ties of the aerosol particles, and for convenience of further discussion we can write:

I I PQ Q; ; ; ;l t l w l l( ) = ( ) ( ) ( )( )ext
aer aer aer  0 . (5)

All of these characteristics (t lext
aer ( ), w l0

aer ( ) , Paer Q;l( )) are highly variable and will be

considered below as unknown characteristics that can be retrieved from multi-angular

and multi-spectral radiance data.  In principle, aerosol properties vary in the vertical di-

rection and a multi-layer model of atmosphere is required, in order to account for the

vertical variations in t(l), w0(l), and P(Q;l).  However, radiances measured at the

ground are influenced by the whole atmospheric column and are not expected to be

strongly dependent on the vertical distribution of aerosol.  Consequently, most

ground-based retrievals characterize the optical properties of the aerosol in the total

atmospheric column (columnar aerosol).  Therefore, in our present study we focus on

designing an algorithm for the vertically homogeneous atmosphere.  The strategy of

accounting for vertical variability in the atmosphere will be outlined later in Section 4.

Thus, from the viewpoint of radiative transfer calculations, the radiance I(Q;l)

measured from the ground is a function of the optical characteristics of columnar aero-
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sol (t(l), w0(l) and P(Q;l)).  This is why the inversion of atmospheric radiance can natu-

rally be designed for the retrieval of these aerosol characteristics.  For instance, Wang

and Gordon [1993] and Box and Sendra [1999] employ such an inversion strategy in their

retrievals.  Alternatively, the inversion can be focused on retrieving parameters of

aerosol microstructure, such as particle size, number, etc.  We will utilize this approach

by extending the ideas previously developed in the papers of King et al. [1978] and Na-

kajima et al. [1983, 1996].

2.2 Microphysics modeling of aerosol optical properties

The modeling of optical characteristics via parameters of microstructure is a

rather common way of light scattering characterization in both laboratory and remote

sensing methods  (cf., McCartney [1977]).  For example, the aerosol optical characteris-

tics (phase function (P( Q )), optical thickness of aerosol extinction, scattering and ab-

sorption (text(l); tscat(l); tabs(l))) can be modeled from microstructure parameters using

the following approximations:

t l l
p
l

lscat scat  n  ( ) ( ) = æ
è

ö
ø ( ) ( )òP K m r r dr

r

r
Q Q; ; ; ˜ ;

min

max2
, (6)

t l
p
l

lt... ...
min

max
; ˜ ;( ) = æ

è
ö
ø ( ) ( )ò

2
K m r r dr

r

r
 n  , (7)

where r is particle radius, n(r) = dN(r)/dr denotes particle number size distribution,

Kscat(…).is a scattering cross section
 

and
 

Kt…(…) is an extinction cross section

(
l

p
2

2r Qext ...( )  in the case of Mie theory, where Qext(…) is the extinction efficiency factor).

In our studies we will assume aerosol particles are spherical.  Correspondingly, the

functions Kscat(…) and Kt…(…) will be approximated by Mie functions derived for

spherical and homogeneous particles with the complex refractive index:

m̃ n i kl l l( ) = ( ) - ( ) .

Eqs. (6)-(7) allow one to consider size distribution and refractive index of aerosol parti-
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cles instead of  directly considering t(l), w0(l) and P(Q;l) of the aerosol.

Finally, atmospheric radiance I(Q;l) given by Eq. (5) can be defined via Eqs. (6)-

(7) as a function of the parameters of aerosol microstructure:

I I dN r dr mQ; ; ˜l l( ) = ( ) ( )( ) . (8)

Thus, Eqs. (5) and (8) represent two different strategies of atmospheric radiance

modeling.  Eq. (1) gives the formal radiative transfer modeling based on radiative char-

acteristics (t(l), w0(l) and P(Q;l)) of the atmospheric layer with no assumptions on

these characteristics.  Therefore, the inversion of an atmospheric radiance can be de-

signed for the retrieval of these aerosol characteristics.  We employ an alternative ap-

proach and focus the inversion on retrieving parameters of the aerosol microstructure.

In this case, some relationship between optical thickness, single scattering albedo, and

phase function is applied by assuming the aerosol particles are homogeneous spheres,

as in Eq. (8).  Additional discussion on details of atmospheric radiance modeling will be

given in Section 4.

3. Inversion Strategy

To formulate the criteria of inversion optimization we employ principles of sta-

tistical estimation theory (cf., Edie et al. [1971]).  Correspondingly, in designing the re-

trieval algorithm we account for the character and level of uncertainties in the initial

data.  This is especially important when we invert the data measured under different

experimental conditions (i. e., data from different sources).  Therefore, inversion of

multi-source data is a subject of particular consideration here.

Using a priori constraints is an another key aspect, which requires a detailed de-

liberation. Phillips [1962], Twomey [1963], and Tikhonov [1963], have shown that apply-

ing a priori constraints (e.g., the smoothness of retrieved functions) is a critical compo-

nent of designing a successful inversion with many parameters.  Choosing the strength

of a priori constraints is, however, an especially challenging problem (e.g., Rodgers
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[1976], Twomey [1977], King [1982]), which becomes even more challenging when such

different parameters as particle size distribution and complex refractive index are re-

trieved simultaneously.  Our strategy is to consider measurements and a priori knowl-

edge together as a single set of multi-source data.  These data are combined in a single

set using the principles of statistical estimation and strength of the influence of each data

source on the retrieval result and assigned according to the relative accuracy of the

data.

Thus, the current Section discusses the principles of inversion optimization,

which are the same for both measured and a priori data.  The specific questions of ap-

plying a priori constraints are discussed in detail in Section 4.2.

3.1 Statistically optimized inversion of multi-source data

The inversion is designed as a search for the best fit of all data considered by a

theoretical model taking into account the accuracy differences of the fitted data.  The

errors in all inverted data are determined statistically.  Both measured and a priori data

are separated into groups assuming that data obtained from the same source (i.e., by

the same way) have a similar error structure, independent of errors in the data ob-

tained from another source.  For example, direct sun and diffuse sky radiances have dif-

ferent magnitudes and are measured by sensors with different sensitivity, i.e., errors

should be independent (due to different sensors) and may have different values (due to

different magnitudes).

Thus, both measured and a priori data can formally be written as follows:

f a f ak k k
*( ) = ( ) + D (k=1, 2,…,K), (9)

where the vectors f1 and f2 relate to sky (at the selected wavelengths and angles) and

sun (at the selected wavelengths) radiance measurements.  The vector a denotes the

aerosol parameters which should be retrieved.  The vectors fk>2 include the values of a

priori constraints on aerosol parameters or possible accessory data.  The asterisk “*“
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denotes the data known with some uncertainties Dk.

Numerous studies have shown that the normal (or Gaussian) distribution is the

most expected and appropriate function for describing random noise (detailed discus-

sions can be found in the books by Edie et al. [1971] and Tarantolla [1987]).  The normal

Probability Density Function (PDF) for each vector fk
* of initial data can be written in

the form:

P f a f C f a f C f a fk k
m

k k k
T

k k kexp( )( ) = ( ) ( )( ) - ( ) -( ) ( ) ( ) -( )æ
è

ö
ø

* - * - *2
1
2

1 2 1p det
/

, (10)

where T denotes matrix transposition, Ck is the covariance matrix of the vector fk ;

det(Ck) denotes determinate of the matrix, and m is the dimension of vectors fk and fk
*.

The vectors fk
* are obtained from different sources and, correspondingly, they are sta-

tistically independent.  This is why the joint PDF of all inverted data can be obtained by

simple multiplication of the PDF of all vectors fk
* as follows:

P Pf a f a f f f a f f a f C f a f1 K 1 K k k
k

K

k k

T

k k k
k

K

 ~  exp( ) ( )( ) = ( )( ) - ( ) -( ) ( ) ( ) -( )æ

è
ç

ö

ø
÷

* * *

=

* - *

=
Õ å,.., ,...,

1

1

1

1
2

. (11)

According to MML (Method of Maximum Likelihood), the best estimates â  of un-

knowns correspond to the maximum of likelihood function (PDF), i.e.

P f a f a f f1 K 1 Kˆ ,.., ˆ ,..., max( ) ( )( ) =* * . (12)

The MML is one of the strategic principles of statistical estimation and the ob-

tained solution â  is statistically the best in many senses (see Edie et al. [1971]).  The solu-

tion is asymptotically (since PDF is defined asymptotically) normal and optimum (most

accurate – the retrieval errors have the smallest standard deviations).  In addition, the

MML solution keeps many optimum characteristics even in the case of a limited num-

ber of observations.  The optimum properties of MML are closely connected with the

Fisher information determination (see Edie et al. [1971]).

The maximum of the PDF exponential term given by Eq.(11) corresponds to the
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minimum of the quadratic form in the exponent.  Therefore, the best solution â , which

can be derived from all given data fk
*, is a vector â  corresponding to the minimum of

the following  form:

Y Ya a f f a W f f a( ) = ( ) = - ( )( ) ( ) - ( )( )é
ëê

ù
ûú

=

-

=
å åg gk k

k

K

k k k
T

k k k

k

K

     

1

1

1

* * . (13)

This equation is written via Lagrange multipliers gk and weight matrices Wk defined as:

W Ck
k

k =
1
2e

, (14)

where ek
2 denotes the variance of errors Dk in the data vector fk

* .  Correspondingly, La-

grange multipliers get clear statistical interpretation as the ratios of variances:

g
e

e
k

k
= 1

2

2 . (15)

It should be noted that there is no need to know the absolute value of the variance e1
2,

because the retrieval process is aimed at finding the global minimum of Y(a) and does

not depend on the value of this minimum.  At the same time, it is known that the value

of Y(a) has a c2 distribution and that the minimum of Y(a) statistically relates to e1
2 as

follows:

Ymin a f a( ) = -( )N N  1
2e , (16)

where Nf is the number of values in all fitted vectors fk
* and Na is the number of re-

trieved parameters.  The above relation is often used for estimation of measurement

error e1
2.

It is important to emphasize that MML only formulates the condition of optimal-

ity and it does not tell how to achieve the minimum of Y(a).  Finding the minimum of

quadratic form Y(a) is a technical question and choosing one or another procedure does

not improve the solution provided the problem is not ill-posed and the solution is

unique.  According to our strategy of designing the inversion algorithm, the correct
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posing of the problem should be done at the stage of forming the initial data set given

by Eq.(9).  For example, in our case of inverting sky (f1
*) and sun (f2

*) radiances, these

two basic data sets will be supplemented by some a priori data of corresponding fk
* with

k>2.  Therefore, the formulation of initial data sets denoted by Eq.(9) is a critical ques-

tion in inversion algorithm development.  In contrast, minimization of Y(a) is a techni-

cal question, which practically does not affect the accuracy of the solution.  Neverthe-

less, a good design of a minimizing technique is important for liberating computer

power requirements and consequently reducing the time consumption of the retrieval.

3.2 Minimization procedure

Modern scientific literature (e.g., Press et al. [1992]) proposes a variety of stan-

dardized mathematical methods and software for minimizing quadratic forms.  As

noted in the previous Section, the choice of method for finding the minimum of Y(a)

(Eq. (13)) is not a critical issue and mainly depends on the complexity of the dependen-

cies fk(a) and the preference of the inversion algorithm developer.  Nevertheless, below

we propose a generalized flexible scheme of minimization that can be easily reduced to

different standard methods.  The scheme shows the clear relationship between different

standard methods.  Therefore, our expectations are that this scheme should be rather

helpful for designing inversion algorithms for different applications.

For the general case of nonlinear functions fk(a), the minimization is usually im-

plemented by iteration:

ˆ ˆa a ap 1 p p -  + = D , (17a)

where the correction Dap can be approximated by the linear estimator Dâp  as follows:

D Da ap
p

p   » t ˆ . (17b)

The multiplier tp £ 1 (arbitrary chosen) is typically used in for providing monotonic

convergence of non-linear numerical algorithms (cf. Ortega and Reinboldt [1970]).  As-

suming that Dâp  is in the close neighborhood of the solution â , a Taylor expansion can
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be used:

f a f a U a a a a
ak k

p

k

p p
pˆ ˆ ˆ ...

,( ) = ( ) + -( ) + -( ) +o
2

(18)

where U
ak p,

 is the Jacobi matrix of the first derivatives in the near vicinity of the vector

ap , i.e. U
f a

a

a

k, ji

k j

i

p

p

 { } =
( ){ }( )¶

¶a
, and o â a-( )p 2

 denotes the function that approaches zero

as â a-( )p 2
 when â a-( ) ®p 0 .  Now, neglecting all terms of second or higher order in

Eq. (18), we can consider fk(a) as linear functions in Eq. (13).  Accordingly, the correction

Dâp  corresponds to the minimum of Y(a) with fk(a) linearly approximated.  Corre-

spondingly, Dâp  can be found (with account for noise optimization) as a solution of the

so-called normal equation system, which for our case is the following (details are given

in Appendices A-B):
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(19a)

This normal equation system is the solution of linear LSM (Least Square Method, e.g.,

Tarantolla [1987]) which gives the minimum of the quadratic form of Eq. (13) for linear

functions fk(a).  The normal equation system gives the solution of linear LSM and thus it

gives an optimum linear estimate.  The terms with multiplier g Da  are added in both the

left and right parts of Eq. (19a) for improving the convergence of the whole minimiza-

tion procedure given by Eqs. (17)-(19a) (details are given in Appendix B).  These terms

are incorporated statistically in similar manner as all data in Eq. (9), i.e., the a priori ex-

pected correction ( ˆ )Da * is assumed statistically as estimates ( ˆ ) ˆ ( ˆ )D D D Da a a* = ( ) +  with

covariance matrix CDa.  It should be noted that both the a priori estimate ( ˆ )Da * in Eq.

(19) and the multiplier tp £ 1 in Eq. (17b) are mainly aimed to decrease the length of

Dâp , because linear approximation may strongly overestimate the Dâp  correction.  Un-
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derestimation of Dâp  does not affect the convergence, since underestimation may only

slow down the arrival to the final solution and not to mislead the minimization.

The key question of implementing minimization by Eqs. (17)-(19) is the solving

of the linear system Eq. (19a), which in the compact form can be rewritten as follows:

F D Yp
p p   ˆ ˆa a= Ñ ( ) , (19b)

where matrix Fp denotes the matrix on the left side of Eq. (19a).  This matrix (at g Da  =

0) closely relates to the matrix of Fisher information, widely considered in statistical es-

timation theory [Edie et al., 1971].  The vector Ñ ( )Y ap  (i.e., vector on the right side of

Eq. (19a)) represents the gradient of the quadratic form Y(a)  (Eq. (13)).  This vector has

the principal importance for building optimum minimization [Ortega, 1988].

Thus, Eqs. (17)-(19) give rather a general and flexible form to the minimization of

the quadratic form Y(a) (Eq. (13)).  This procedure can be easily transformed, by

choosing a method for solving Eq. (19a), to many other well-established numerical pro-

cedures based on matrix inversion, relaxation, combined iterations methods, etc.  In our

opinion, such freedom in incorporating different linear inversion techniques to the gen-

eralized non-linear scheme (Eqs. (17)-(19)) is a great help for both understanding the

relationships between existing inversion algorithms and in developing our new algo-

rithm.

In our algorithm for inverting atmospheric radiance, we implement two alterna-

tive techniques: matrix inversion (using singular value decomposition) and relaxation

quasi-gradient techniques.  A brief introduction to these methods is given below.

3.2.1. Matrix inversion

The linear system given by Eq. (19) can be solved using matrix inversion opera-

tions.  First of all, the fundamental formula for linear LSM solution implies matrix inver-

sion (e.g., Press et al. [1992]).  Correspondingly, a great number of the LSM related in-

version methods use matrix inversion.  For example, Phillips [1962], Twomey [1963],
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Tikhonov [1963], Turchin et al. [1970], Rodgers [1976], and others employ matrix inver-

sion in their methods.  All of these methods are well known in optical applications and

differ from basic LSM formulae by using differing a priori constraints (additional discus-

sion can be found in Section 4 and in the papers of Dubovik et al. [1995, 1998a]).

The basic scheme of solving a non-linear system is the traditional Newton-Gauss

procedure (e.g., Ortega and Reinboldt [1975]), which implements the LSM principle in the

nonlinear case.  Eqs. (17)-(19) can easily be reduced to the Newton-Gauss procedure.

Namely, if we define tp = 1, g Da  = 0 and gk = 0 (for k ³ 2) in these formulas, we obtain

the Newton-Gauss method with statistical optimization at each p-step:

a a U W U U W f fp 1 p
p

T
p p

T p     + - - *= - ( ) -( )( )-1 1 1 , (20)

where for simplicity we denote the vectors and matrices as follows: Up denotes Jacobi

matrix U
a1, p ; W denotes weight matrix W1; vector fp denotes vector f(ap).  In this Sec-

tion, we always assume gk = 0 (for k ³ 2) only because the discussed standard numerical

formulas are written for inverting a single data set.

Obviously, Eq. (20) incorporates the basic linear LSM formula.  Indeed, Eq. (20) is

reduced to linear LSM by assuming linear dependence f(a) = Ua:

a a U W U U W Ua f U W U U W fp 1 p T T p T T          + - - * - - *= - ( ) -( )( ) = ( )- -1 1 1 11 1 . (20a)

In practice, Newton-Gauss iterations may not converge and need to be modified.

The most established modification of Eq.(20) is widely known as the Levenberg-

Marquardt method (e.g., Ortega and Reinboldt [1970], Press et al. [1992]).  This method is

also included in the scheme of Eqs. (17)-(19).  Namely, if we assume tp £ 1, g Da  > 0 and

( ˆ )Da * = 0, then Eqs. (17)-(19) can be reduced to the Levenberg-Marquardt method:

a a U W U D U W f fa
p 1 p

p p
T

p p
T pt       + - - - *= - +( ) -( )( )1 1 1g D , (21)

where D = (WD)-1 and gDa = e e0
2 2

D .  It should be noted that using the generalized inver-

sion procedure of Eqs. (17) and (19) helps to provide an additional simple interpretation
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of the Levenberg-Marquardt method.  Indeed, an a priori assumption of ( ˆ )Da * = 0

means that we constrain the solutions Dâp  to the smallest value (the closest to ( ˆ )Da * =

0).  In addition, by assuming ( ˆ )Da *¹ 0 and varying WD in Eq. (19a) the convergence

character can be adjusted in the scheme of Eqs. (17)-(19) more flexibly than is possible

with standard Levenberg-Marquardt formula Eq. (21).

The main difficulty of using the matrix method appears in the situation when the

matrix Fp  is of quasi-degenerate nature and the inverse operator Fp( )-1
 is very unsta-

ble.  The practical way of applying matrix inversion is to use matrix singular value de-

composition.

Singular value decomposition is an operation of linear algebra, that allows one

to decompose matrix F as F = V I A  
iw , where matrices V and A are orthogonal in the

sense that VTV = I and ATA = I.  Matrix Iwi
 is diagonal with the elements on the diago-

nal equal to wi.  Inversion of matrix F  trivially follows from this decomposition as

F- =1
1A I VT T  

i/ w .  In the case of a singular matrix F,   the inverse matrix of F  is un-

certain, because some values wi are equal or close to zero.  Correspondingly, by means

of replacing wi = 0 by a moderately small non-zero wi, singular matrix F can be replaced

by reasonably close non-singular matrix F’ which can be trivially inverted.  The details

of this method can be found in Press et al. [1992].  In many practical situations singular

value decomposition is very helpful.  Therefore, we employ this procedure in our algo-

rithm to implement matrix inversion.

The main concern of applying this method comes from the fact that replacement

of matrix F  with matrix F’ is formal and has no relation to the physics of an applica-

tion.

3.2.2. Alternatives to Matrix Inversion Methods

Many methods are known in the mathematical literature that solve linear sys-

tems of equations without using matrix inversion.  For example, Jacobi and Gauss-
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Seidel univariant iterations, steepest descent method, method of conjugated gradients,

singular values decomposition, etc.  Some of these methods can yield superior results

over matrix inversion operations.  For example, in our algorithm we employ linear it-

erations, which always give a result even if the linear system is singular and a solution is

not unique.  In contrast with inversions via singular value decomposition, iterations do

not require any change of matrix F.

In the papers by Dubovik et al. [1995, 1998a], solution of the p-step system (Eq.

(19)) is implemented by means of linear q-iterations and the whole minimization proc-

ess is represented via combined iterations (two kinds of iteration).  Namely, Dâp  is ob-

tained from Eq. (19b) by means of q-linear iterations:  

D D F D Ya a H a ap q p q

p

q

p
p q p ( ) = ( ) - ( ) ( ) - Ñ ( )[ ]+1

. (22a)

Eqs. (17)-(18) and (22) formulate a search for the minimum ap of the quadratic form

Y(a) (Eq. (13)) via combined p- and q-iterations.  For each p-iteration, a larger number

of q-iterations can be made.  The matrix Hp  and vector Dap q=0( ) can be chosen by vari-

ous ways to assure that the iterations converge.

Such a combined iteration technique is very helpful for realizing statistical opti-

mization (which usually is associated with matrix methods) by means of relaxation it-

erations ( Hp  is a diagonal matrix) in situations where matrix inversion is not efficient.

In addition, the consideration of combined iterations helps to understand relationships

between two categories of inversion methods: matrix inversion methods (Phillips

[1962], Twomey [1963], Tikhonov [1963], Turchin et al. [1970], Rodgers [1976]) and relaxa-

tion techniques (Chahine [1968], Twomey [1975]).  These two kinds of methods are very

popular in atmospheric optics and remote sensing and they usually are considered as

alternative.

The steepest descent method deserves particular attention among all other re-

laxation techniques.  This method has been deeply elaborated in the mathematical lit-
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erature (e.g., Forsythe and Wasow [1960], Ortega [1988]).  The basic idea of the steepest

descent method (or gradient search method) is to minimize the quadratic form Y(a)

using it’s gradient as a direction of the strongest local change of Y(a).  The minimization

procedure given by Eqs. (17)-(18), (22), can be easily reduced to the steepest descent

method by assuming Hp  = tq1, Dap q=0( )  = 0 in Eq. (22):

a a a a U W f fp 1 p
p

p p
p p

T pt t     + *= - Ñ ( ) = - -( )( )-Y 1 . (22b)

Also, only one q-iteration is to be implemented for each p iteration in Eq. (22b), i.e. tp,q =

tp and the combined iterations are reduced to only one kind of p-iteration.

As pointed out in Press et al. [1992], the steepest descent method is generalized

by the Levenberg-Marquardt formula.  Namely, Eq (19a) can be reduced to (21) by de-

fining matrix D in Eq. (19a) as the unit matrix 1 and prescribing a large value to the pa-

rameter gDa.  In Appendix D, we show that the popular Twomey-Chahine relaxation

technique proposed by Twomey [1975] can be considered to be the steepest descent

method.

Equation (22b) solves both linear and non-linear equations.  Correspondingly,

the non-linear steepest descent iterations can be used directly for minimization of quad-

ratic form in Eq. (13).  However, such minimization can be very time consuming be-

cause, for the non-liner case, each iteration requires a recalculation of the Jacobi matrix

Up and the steepest descent method converges to the solution only after a very large

number of iterations.  Therefore, to reduce computation time, we use the steepest de-

scent method only to solve linear p-step systems Eq. (19b).  In other words, we assume

Hp  = tq1, Dap q=0( )  = 0 in Eq. (22a).  Then we implement a large number Nq of q-

iterations.

We choose the value of tp,q providing the fastest convergence of the process at

each q-iteration.  Forsythe and Wasow [1960] and Ortega [1988] describe the principles of

defining such a value.
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4. Sun-sky radiance inversion algorithm

Sections 2 and 3 described two complementary and necessary tools for realizing

an inversion algorithm: a model of radiative transfer and a method of optimum inver-

sion.  Our intention was to structure and, in a certain sense, to standardize the process

of designing an inversion algorithm.  Namely, Section 3 outlined the optimization strat-

egy common for any numerical inversion and proposed the scheme (Eqs. (17)-(19))

uniting a diversity of minimization methods.  Our expectation is that the proposed in-

version strategy enables one to create a flexible inversion algorithm, that can be easily

upgraded with new developments in forward modeling and/or numerical recipes.

At the same time, the ability to model radiance with available codes and to im-

plement numerical inversions does not reduce the design of sun-sky radiance inversion

codes to a purely technical procedure.  There are many small and specific questions that

need to be resolved in order to create an inversion procedure that is efficient in practice.

Definitively, the key question in inversion algorithm development is quantifying the a

priori constraints (defining Lagrange multipliers, formulating smoothing matrices, etc.)

In addition, the forward model may also require some adjustments.  For instance, nu-

merical inversion of Eqs. (17)-(19) uses vectors of aerosol parameters, whereas the for-

ward models (Eqs. (1) and (6)-(8)) operate on continuous functions.  Correspondingly,

the vectors with a reasonable number of components should replace functions tradi-

tionally used in modeling.  Thus, below in this Section, we proceed with the detailed de-

sign of a sun-sky radiance inversion algorithm, using the principles described in Sec-

tions 2 and 3.

4.1 Adaptation of forward model to the inversion

The scheme of numerical inversion given by Eqs. (17)-(19) requires extensive

forward calculations.  Namely, each p-step requires recalculation of fitted characteristics

f(a) and Jacobi matrices U in the case of non-linear dependence f = f(a).  Correspond-
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ingly, adopting a fast technique of forward calculation is very important for making the

inversion algorithm practical and efficient.  Possible ways of accelerating and adjusting

the forward model for inversion purposes will be discussed below.

4.1.1 Optical thickness and phase function simulations

Eq. (8) summarizes the modeling concept that relates optical properties of the

atmosphere with the size distribution (dN(r)/dr) and complex refractive index ( m̃ (l)) of

the aerosol particles, assuming homogeneous spheres.  Both size distribution (dN(r)/dr)

and refractive index ( m̃ (l)) will be the focus of the retrieval in the designed algorithm.

The retrieval of particle size distribution from the measurements of light scattered by

polydispersions of spheres is a well-developed optical application.  The concept of size

distribution retrieval from single scattering measurements is particularly clear for a case

of known refractive index; the integral equation (Eqs. (6) or (7)) can be reduced to a lin-

ear system, then solved by standard  algebraic methods.  In our case, the situation is

more complicated because the refractive index is unknown and the contribution of mul-

tiple scattering to sky radiance is significant in some instances.  Nevertheless, in our al-

gorithm, replacing integral Eqs. (6) and (7) with linear systems is essential for making

radiance simulations more rapid.  Also, Eqs. (6) and (7) are written for the size distribu-

tion of columnar aerosol particle number concentration; however, practical algorithms

are often designed to retrieve the size distribution of surface area or volume of aerosol

particles since light scattering of small single particles is a function of particle surface

area or volume (cf. Bohren and Huffman [1983]), rather than number concentration.

Thus, for flexibility of our algorithm, we transform Eqs. (6) and (7) using different kinds

of size distributions: number, radius, area and volume particle size distributions.  Then,

to meet calculation speed requirements, we reduce the integral equations to a linear

systems as follows:
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Here, the index k (k = 0, 1, 2, 3) denotes the type of distribution as follows:
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The kernel functions of optical thickness Kt...(…) and differential scattering coefficient

Kscat(…) approximated in Eqs. (23)-(24) by matrices Kt...(…) and Kscat(…).  The vector xn

approximates size distribution dRn(r)/dlnr by Nr elements corresponding to the points

{xk}I = dRn(ri)/dlnr chosen with equal step D ln ln lnr r r const= - =+i 1 i .  The calculations

of the matrices Kt...
...( ) and Kscat(…) in our algorithm are implemented in two different

ways of interpolating size distribution values between grid points ri.  First, the size dis-

tribution dRn(r)/dlnr between points ln(ri)-(Dlnr)/2 and ln(ri)+(Dlnr)/2 can simply be as-

sumed to be equal to dRn(ri)/dlnr, i.e., elements of the matrices are computed as:
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The trapezoidal approximation is another way of interpolating between points.  In this

case, the size distribution is approximated between a grid points ln(ri+1) and ln(ri)  line-

arly by dRn(r)/dlnr = a lnr + b, where a and b must be chosen to coincide with values

dRn(ri+1)/dlnr and dRn(ri)/dlnr.  The matrix elements for this case are computed accord-

ing to Twomey [1977] as:
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The index j in Eqs. (25a)-(25b) relates to matrix elements with sun radiance at different

wavelengths and sky radiance at different wavelengths and angles.

The dependence of matrices Kt...
...( ) and Kscat ...( ) on real n and imaginary k part

of the refractive index are approximated from look-up tables over all possible n and k

values.  Namely, we compute matrices in Nn and Nk grid points, which cover the whole

range of expected values.  The matrices for the values of n and k between these grid

points are computed using linear interpolation on a logarithmic scale.

It should be noted that in Eqs. (23)-(25), the size distributions are written in the

logarithmic scale (dRn(r)/dlnr) instead of the linear scale (dN(r)/dr) used in Eqs. (6)-(7).

This is because the kernel functions K......(…) show much smoother variability for equal

relative steps Dr/r (i.e., for equal logarithmic steps, since dr/r = dlnr) than for equal ab-

solute steps Dr.  Correspondingly, the logarithmic scale is commonly preferred for

viewing optically important details of the particle size distributions and for making

faster integrations over particle size.

According to Eqs. (25a)-(25b), the elements of the kernel matrices K…(…) are a

product of the integration of kernel functions over particle size.  Such integration can be

time consuming.  Correspondingly, matrix approximations (Eqs. (23)-(24)) are very effi-

cient in practice, because they allow prompt calculation of optical thickness t… (extinc-

tion and absorption optical thickness) and differential scattering coefficient

tscat(l)P(Q;l), give a vector of size distribution xk and refractive index m̃ l( ).

All of the above mentioned approximations produce some error even in so-

called “error free” conditions.  According to our estimations (for Nr = 22 for the range:

0.05 £ r £ 15 mm; Nn = Nk = 15 for the ranges: 1.33 £ n £ 1.6 and 0.0005 £ k £ 0.5)  these



25

errors can be considered as relative random errors with variance less than 0.01 for the

typical aerosol models given by Tanré et al. [1999].  For significantly narrower size dis-

tributions (which are rather unlikely for atmospheric aerosols) this error may increase

to 2-3%.

4.1.2. Simulations of radiative transfer in the atmosphere

As it was mentioned in the Section 2.1, we have employed a scalar discrete ordi-

nates radiative transfer code to simulate diffuse radiance I(Q,l) in the plane-parallel at-

mosphere approximation.  To make possible internal checks of the algorithm, we

adopted two independent radiative transfer codes, one by Nakajima and Tanaka [1988]

and the other by Stamnes et al. [1988].  However, for practical reasons we mainly used

the program of Nakajima and Tanaka [1988], since it employs a truncation approxima-

tion that allows fast and accurate calculation of downwelling radiance in the aureole an-

gular range with a relatively small number of Gaussian quadratures points.  At the

same time, it should be noted that we use radiative transfer codes only for modeling

fitted characteristics f(a).  Jacobi matrices Uk,a of sun/sky radiance derivatives are calcu-

lated in the single scattering approximation, i.e., for k = 1 ,2.:

Uk,a » Uk,a (single scattering) (26)

The elements of these matrices can be easily calculated from Eqs. (1a) and (1b) assuming

G(…) equals zero.  Our retrieval experience shows that neglecting multiple scattering in

simulating first derivatives does not particularly affect the retrieval results.

Thus, using Eqs. (23) – (25), the aerosol optical thickness t…(l), single scattering

albedo w0(l) = tscat(l)/text(l), and phase function (P(Q,l)) are generated from the re-

fractive index m̃ (l) = n(l) – ik(l) and the size distribution of aerosol particles

dRn(r)/dlnr in the total atmospheric column.  These aerosol characteristics weighted (as

given by Eqs. (2)-(4)) with molecular scattering and gas absorption compose a set of

atmospheric layer optical characteristics, that are necessary for radiative transfer com-
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putations.

Regarding vertical variability of the atmosphere, we consider two approxima-

tions in our algorithm: (i) an atmosphere with vertically homogeneous optical proper-

ties, and (ii) an atmosphere with a known vertical profile of aerosol extinction coeffi-

cient.  For the case of a vertically homogeneous atmosphere, the optical thickness of

molecular scattering and gaseous absorption are calculated as described by Holben et al.

[1998].  If the vertical profile of the aerosol extinction coefficient is available, the radia-

tive transfer calculations can be performed for a multi-layered atmosphere.  Therewith

the profiles of water vapor and ozone absorption together with climatological profiles

of temperature and pressure (for molecular scattering calculations) are required.  How-

ever, we hardly can count upon having information on the vertical distribution of aero-

sol complex refractive index, single scattering albedo and shape of the particle size dis-

tribution.  Therefore, these optical characteristics are assumed to be constant for the

aerosol in the whole atmospheric column.

We focus our primary consideration on the simplest model of a homogeneous

atmosphere.  This is because information on aerosol vertical profiles is not currently

available for AERONET sun/sky radiometer locations.  In addition, the effect of aerosol

vertical variability on sky radiance ground measurements is often neglected, because it

is rather modest in comparison with effects caused by aerosol size distribution variabil-

ity.  In addition, to minimize possible retrieval uncertainty due to the assumption of a

homogeneous atmosphere, we concentrate our analysis on inverting sky radiances

measured in the solar almucantar (Eq. (1b)).  In observations with such a scheme (zenith

angle of observations is equal to the solar zenith angle), all atmospheric layers are al-

ways viewed with similar geometry.  Correspondingly, sky radiances in the solar almu-

cantar are not sensitive to vertical variations of aerosol.



27

4.2. Inversion implementation

Implementing the inversion strategy (Section 3) in a practical retrieval requires

defining a number of values and parameters.  First, the error statistics of sun and sky

radiance measurements must be quantified for incorporating covariance matrices into

the inversion algorithm.  Second, using a priori constraints should be clarified: what

kind of a priori constraints should be used, and what values of the corresponding La-

grange multiplier are appropriate.

4.2.1. Measurement error statistics

The magnitudes of direct and diffuse radiation are very different (direct radiation

is much stronger) and the sensors that measure them are different and use different

calibration techniques.  Therefore, the values of errors in sun and sky radiance meas-

urements are also rather different.  Correspondingly, in a retrieval algorithm, we con-

sider sun and sky radiance measurements as two separate groups:

I I dR r d r n k

dR r d r n k

I
*( ) = ( ) ( ) ( )( ) + ( )

( ) = ( ) ( ) ( )( ) + ( )

ì
í
ï

îï

q l q l l q l
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n       

D

D
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In Eq. (27) and everywhere that follows, we consider spectral aerosol extinction optical

thickness t*(l) instead of sun radiance as an initial data set for the retrieval.  This is be-

cause aerosol extinction optical thickness is one of the standard products derived from

AERONET sunphotometer measurements (since the sun radiance is calibrated to re-

trieve t*(l) rather than the sun’s radiance) and operating with t*(l) helps us to use both

the extensive experience regarding the accuracy of AERONET-derived aerosol optical

thickness  and existing knowledge of t*(l) variability for atmospheric aerosol.  Thus,

the two basic data sets in Eq. (9) correspond to sky radiance measurements (k = 1) and

spectral aerosol optical thickness (k = 2).  However, to define the elements of both the

fitted vectors fk and the vectors of the unknowns (including size distribution and com-

plex refractive index), we need to outline the alternatives, viz., operating with loga-
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rithms or with absolute values.

Logarithmic Transformation (Nonnegativity Assumption)

Retrieval of logarithms of a physical characteristic, instead of absolute values is

an obvious way to avoid negative values for positively defined values (e.g.,

dRn(ri)/dlnr).  However, the literature devoted to inversion techniques tends to con-

sider this apparently useful tactic as an artificial trick rather than a scientific technique to

optimize solutions.  Such misconception is probably caused by the fact that the pio-

neering efforts on inversion optimization by Phillips [1962], Twomey [1963] and Tik-

honov [1963] were devoted to overcome the difficulties in solving the Fredholm integral

equation of the first kind, i.e., a linear system produced by quadrature.  The problems

of that kind are the retrieval of size distribution by inverting spectral dependence of op-

tical thickness (Eq. (23)) or by inverting angular distribution of scattered sky radiance.

Considering t…(l) and tscat(l)P(Q;l) as functions of the logarithm of the size distribu-

tion lnxk(lnr) (i.e. dlnRn(r)/dlnr) instead of xn(lnr) requires replacing initially linear Eqs.

(23)-(24) by nonlinear ones.  On the face of it, such a transformation of linear problems

to nonlinear ones is difficult to accept as an optimization.  On the other hand, in cases

when a forward model is a nonlinear function of parameters to be retrieved (e.g., at-

mospheric profiling), the retrieval of logarithms is more likely to be the logical ap-

proach.

In our studies we follow the concept proposed in earlier papers (e.g., Dubovik et

al. [1995]).  According to that concept, using logarithms of measured and retrieved

characteristics in the retrievals is often expedient due to both rigorous statistical consid-

erations and practical experience.  It is well known that the curve of the normal distribu-

tion is symmetrical.  In other words, one may affirm that the assumption of a normal

PDF is equivalent to the assumption of the principal possibility of negative results aris-

ing even in the case of physically nonnegative values (e.g. intensities, fluxes, etc.).  For
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nonnegative characteristics (t*(l) and I(Q;l) in our studies), the choice of the log-normal

distribution for the measurement noise (i.e., {f1}j = lnI(Qj1;lj2) and {f2}j = lnt*(lj2)) seems

more reasonable due to the following considerations:

- log-normally distributed values I(Qj1;lj2) and t*(lj2) are positively-defined;

- there are a number of theoretical and experimental reasons showing that for

positively defined characteristics the log-normal curve (multiplicative errors, see Edie et

al. [1971]) is closer to reality than normal noise (additive errors) (statistical discussion

can be found in Tarantola [1987]).  Besides, using the log-normal PDF for noise optimi-

zation does not require any revision of normal concepts and can be implemented by

simple transformation of the problem to the space of normally-distributed logarithms.

A similar situation is found for retrieving logarithms of positively defined un-

knowns (e.g., xn(lnr) in Eqs. (23)-(24)) instead of their absolute values.  In fact, according

to statistical estimation theory, LSM estimates â  (obtained under the assumption of

normal PDF) are also normally distributed.  It is obvious, even without rigorous statisti-

cal consideration, that for non-negative xi = xn(lnri), this statement can be applied only

approximately, because the normal distribution can not provide zero probability for xi

< 0.  On the other hand, the retrieval of lnxi instead of xi illuminates the above contradic-

tion, because the normal distribution of ln x̂i  is a reasonable expectation for positively

defined xi.

Moreover, the analysis by Dubovik et al. [1995] has shown that the logarithmic

transformation can be considered as one of the corner stones of the practical efficiency

of Chahine’s iterative procedure.  These techniques are popular in atmospheric research,

even linear systems (Eqs. (23)-(24)), by means of nonlinear iterations.  In Appendices C-

D we show that constructing the retrieval of logarithms can easily derive the methods

by Chahine [1968] and Twomey [1975].  The mathematical treatments given in Appendi-

ces C-D show the close relation of Chahine-like techniques to the steepest descent

method (Eq. (22b)).
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It should be noted that in many situations, retrieval of absolute values or their

logarithms is practically similar.  This is because narrow log-normal or normal noise dis-

tributions are almost equivalent.  For example, for small variations of non-negative

value a the following relationship between Da and Da/a is valid:

D D
D

Dln ln lna a a a
a

a
a= +( ) - ( ) »ln  ,  if   <<  1. (28a)

Correspondingly, if only small relative variations of value a are allowed, the normal

distribution of Dlna is almost equivalent to the normal distribution of absolute values

Da.  The covariance of these normal distributions are connected as follows:

C 1 C 1a a a aln     » ( ) ( )- -1 1

, (28b)

where 1a  is a diagonal  matrix  with the elements 1a{ } =
ii ia .

To make our inversion algorithm flexible, we allow two possibilities in it’s im-

plementation, viz., using (i) absolute values or (ii) logarithms for both measured charac-

teristics (sky radiance and optical thickness) and retrieved parameters (size distribution,

real and imaginary parts of complex refractive index).  However, everywhere below,

we focus our discussion on operating with logarithms.  This is because all considered

characteristics  (both measured and retrieved) are positively defined.  In addition, by

using logarithms it is simple to operate simultaneously with characteristics that have

different units and values varying over a wide range of magnitude.  Thus, the vectors

of measurements are defined as follows:

f1 1 2

* *ln ;{ } = ( )j j jI Q l   and  f2 2

* ln{ } = ( )*

j jt l . (29a)

The vector a of unknowns unites the parameters of size distribution and complex re-

fractive index as:

a{ } = ( )i n i1
ln lnx r for i = 1, …, Nr;

a{ } = ( )i i 2
ln n l for i = Nr+1, …, Nr+Nl; (29b)



31

a{ } = ( )i i 2
ln k l for i = Nr+Nl+1, …, Nr+2Nl

where Nr is number of points used for the retrieval of size distribution, and Nl is the

number of wavelengths.

Weight Matrices of Measurement Data Sets

We consider a set of sky radiance measurements I*(Q;l) as a critical piece of in-

formation that is absolutely necessary for the retrieval of size distribution and complex

refractive index.  Therefore, we have assigned k = 1 (i.e., vector f*1) in Eq. (29) and the

Lagrange multipliers of all other data sets (fk, k > 1) according to Eq. (15) should be de-

fined by rating the variance of corresponding errors to the variance of the errors in sky

radiance.  Hence, the central question in the algorithm design is the comparison of er-

rors in other data sets to sky radiance errors.  Another question relates to the presence

of error correlation for each set.  In other words, should weight matrices Wk be as-

sumed diagonal (no correlation) or non-diagonal (there is correlation).  At present, we

are not aware of any clear correlation between random errors in measurements of ra-

diance at different wavelengths or angles.  Therefore, in our current study, we consider

the simplest case of diagonal weight matrices, i.e.: Wk j i{ } =¹ 0.  The diagonal elements

of weight matrices reflect the spectral and angular changes of instrumental signal/noise

ratio in detecting atmospheric radiance.

The accuracy of sky channel radiance measurements is maintained by calibration

of the sky radiometer with an integrating sphere radiance source at the level of 5% or

better for all wavelengths [Holben et al., 1998].  Therefore, we assume the same 5% ac-

curacy of sky radiance measurements for all wavelengths and angles of observation,

independent of the magnitude of the sky radiance signal (i.e. relative accuracy is a con-

stant).  According to Eq. (28a), relative errors are approximately equal to logarithmic

errors, i.e., for logarithms of measurements (Eq. (29)): i.e., e1 ~ DlnI(Q;l) » 0.05 and the

weight matrix is equal to unit matrix W1 = 1 (where 1 has diagonal elements equal to 1).
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The calibration procedure of the sun channels is expected to reduce the absolute uncer-

tainty in t(l) to the level of ±0.01, independent of wavelength [Holben et al., 1998].  Cor-

respondingly, relative error changes with t(l) and the value of the logarithmic error

Dlnt(l) depends on the magnitude of optical thickness.  Indeed, applying Eq. (28a), we

can use 0.01 = Dt(l) » t(l)Dlnt(l), i.e., Dlnt(l) » 0.01/t(l).  Thus, according to Eq.(14), to

define weight matrix W2 we normalize (covariance matrix of Dlnt(l) by variance of op-

tical thickness logarithmic error at 440 nm (e2
2 ~ D2

lnt(440) » (0.01/t(440))2) and thus we

obtain the following diagonal elements :

{W2}jj = (t(440)/t(lj) )
2. (30)

Values of the Lagrange Multiplier

In the literature devoted to inversion techniques (e.g., Twomey [1977], Tikhonov

and Arsenin [1977], Tarantola [1987]), the Lagrange multiplier is defined as a

nonnegative multiplier that serves to weight the contribution of a priori (smoothness)

constraints, relative to the contribution of the measurements.  The value of this contri-

bution is usually evaluated by correspondent sensitivity studies [King, 1982].

In our studies we pursue a statistical optimization approach that defines the op-

timum inversion of multi-source data as a minimization of the multi-term quadratic

form given by Eq. (13).  This approach does not make any distinction between meas-

ured and a priori characteristics except for the different accuracy of each data set.  The

contribution of each data set is weighted by correspondent parameter gk related to the

contribution of the basic set of measurements (i.e., g1 = 1).  Hence, we assign parameter

gk for every set of a priori or measurement data and, call this gk a Lagrange multiplier

following the traditional terminology.  The value of each Lagrange multiplier is clearly

defined by Eq. (15) as a ratio of error variances.  However, the practical choice of La-

grange parameters is a challenging task, because accurate values of error variances, as a

rule, are not typically available in practice.  Nevertheless, Eq. (15) is very helpful in
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evaluating the expected range of gk values.

In our implementation, the relative impacts of sky radiance and optical thickness

measurements on the retrieval result are assumed to be comparable.  Therefore, in de-

signing the current algorithm, we focus especially on the control of fitting errors of

both sky radiance and spectral optical thickness measurements.  Namely, we anticipate

that a successful retrieval should simultaneously satisfy the following criteria for all k:

Yk £ Nk sk
2, (31)

where Nk is the number of values in the fitted vector fk
* and sk is the measurement ac-

curacy.  Correspondingly, the values of Yk, and the contribution of each term Yk in the

total value of Y, directly depend on the numbers Nk.  However, this dependence of

data impact to the solution based on the number of measurements Nk is not appropri-

ate in practice, because a simple increase of Nk may lead to an increasing number of re-

dundant measurements without an increase of information content.  Therefore, our

strategy of combining data fk
* is to consider sky radiance and optical thickness data sets

as two critical pieces of information and the importance of each peace of information is

independent of the numbers of measurement Nk.  Hence, based on our criteria given

by Eq. (31), we define the Lagrange parameters gk as the following functions of the

numbers of measurements:

g
s
s

gk
1 1

2

k k
2

1

k
k

 
 

 
 

= = ¢
N

N

N

N
. (32)

Obviously, this definition of gk equalizes the values gk Yk and makes reasonable the con-

sideration of parameters ¢g k  (instead of gk), because of their independence of measure-

ment numbers Nk in each data set.  It should be emphasized that defining Eq. (32) is

practically equivalent to the assumption that expected accuracy sk of a single measure-

ment is related to uncertainty ek of the data set, which includes Nk measurements of ra-

diance, as follows:
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ek
2 = Nk sk

2. (33)

This relationship assumes that ek increases with the number of measurements as Nk .

Such a result can be caused by the fact that the number of various random error

sources may increase proportionally to Nk .  For example, the increase of angular and

spectral resolution of radiance measurements requires a longer measurement time re-

sulting in an increase of errors due to natural sky temporal variability.

Thus, the Lagrange multipliers ¢g 1 and ¢g 2  can be defined as follows.  Obviously,

¢g 1 is always equal to unity and is included in Eq. (13) for identity in formulation of all

terms.  The multiplier ¢g 2  in our algorithm is the ratio of variances of sky radiance and

optical thickness measurement errors and according to our assumptions about these

errors (s1 » DlnI(Q;l) » 0.05 and s2 » Dlnt(440) » 0.01/t(440)), the value of ¢g 2  is the fol-

lowing from Eq. (32):

¢g 2  » 25 (t(440))2. (34)

It should be noted that the values used for s1 and s2 are rather approximate.  Also, the

correctness of the assumption in Eq. (33) needs validation (e.g., it may not work for

rather small Nk).  Therefore, we consider Eq. (34), as an estimation of ¢g 2  that needs fur-

ther versification.

4.2.2 A priori constraints

The retrieval of the aerosol size distribution from measurements of scattered

light belongs to the class of so-called ill-posed inverse problems.  Ill-posed problems

tend to have an unstable non-unique solution and using a priori constraints is inevitable

to solving such problems successfully (e.g., Tikhonov and Arsenin [1977]).  Applying

smoothness constraints on the variability of the size distribution (or other retrieved

characteristics) is well established and a commonly accepted technique for eliminating

unrealistic oscillations in the retrievals.  Twomey [1977] gives the basic principles of solu-

tion smoothing for optical and remote sensing applications.  In our algorithm we re-
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trieve several functions (particle size distribution and complex refractive index) requir-

ing different a priori constraints.  The purpose of the current subsection is to introduce

the specific limitations on retrieved dRn/dlnr, n(l) and k(l) by defining vectors fk>2 in Eq.

(9).

We apply two basic methods of constraining the solution.  The first method con-

strains the solution by a sample solution a*.  This constraint has been proposed by

Twomey [1963] and expanded in the scope of the statistical approach by Strand and

Westwater [1968].  Rodgers [1976, 1990] accomplished further development and applica-

tion of this method in atmospheric remote sensing applications.  The second method

constraints only the differences between elements of vector â  and does not restrict

their values.  In another words, this method applies pure smoothness constraints to

eliminate only strong oscillations in the retrieved characteristics.  Twomey [1977] and

Tikhonov and Arsenin [1977] give the basic techniques of implementing such smoothing.

This type of smoothing is commonly used in aerosol optical properties retrievals (e.g.,

King et al. [1978], King [1982], Nakajima et al. [1983, 1996], Spinhirne and King [1995]).

Constraining the Solution by a priori Estimates

The most straightforward method of eliminating unrealistic values in obtained

solution â  is to use an a priori estimate of the solution a* (in another words, virtual

measurements of retrieved characteristics).  For example, the climatological data of

dRn/dlnr, n(l) and k(l) (or of dlnRn/dlnr, ln(n(l)) and ln(k(l)) if the log-normal statistic

is applied), can be considered as a priori estimates.  In this case, the k-th equation system

can simply be defined as:

a a
a

* = + *D , (35)

where D
a*  denotes the error in a priori estimates (climatological data) a*.  Defining the

covariance matrix Ca of errors D
a*  in an a priori estimate a* should not be a problem (at

least for climatological data).  Since Eq. (35) is very simple, incorporating Eq. (35) into
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Eqs. (17)-(19) is rather transparent and we will not discuss it (for details see Dubovik et

al. [1995]).

In our algorithm we include the option of employing an a priori estimate only for

restricting the values of the real part of the refractive index for two reasons.  First, the

range of n(l) for aerosol is limited (e.g., Tanré et al. [1999] give values of n(l) within a

range of 1.40-1.55 for 470-1240 nm).  Second, the information content of atmospheric

radiance measured by AERONET is not sufficient for accurate retrieval of n(l) in some

situations (for  discussion see Dubovik et al. [1999]).  Nevertheless, we will not employ

an a priori estimate of n(l) because we focus our efforts on the situation where n(l) can

be retrieved without forcing retrievals by an a priori range of values of n(l).  Examples

of using a priori estimates of n(l) can be found in the paper by Romanov et al. [1999],

where a similar approach has been applied.  It should be noted that in contrast with a

simple fixing of the refractive index, using a priori estimates of refractive index by Eq.

(35) gives some freedom (depending on corresponding gk) to obtain a refractive index

different from it’s a priori value.

Smoothness Constraints of the Solution

For smoothing the solution, the norm of the g-th logarithmic derivatives of the

retrieved characteristics y(z) are restricted:

a
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where Dmy(zi) denote m-th differences (m = 1, 2, 3, …), which are defined as:

D1y(zi) = y(zi) – y(zi+1) = yi – yi+1,

D2y(zi) = D1y(zi) – D1y(zi+1) = yi – 2yi+1 + yi+2, (36b)

D3y(zi) = D2y(zi) – D2y(zi+1) = yi – 3yi+1 + 3yi+2 – yi+3.

Matrix Sm contains the coefficients for calculating vector dm (with elements {dm}i =
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Dmy(zi) of function y(x) m-th differences:

dm = Sm y, (37)

where y(z) is replaced by correspondent vectors x (with elements zi = z1 + (i – 1)Dx, Dx =

const) and y (with elements yi = y(zi)).  For example, the matrix of second differences, is

given by:

S
2

1 - 2   1    0   ...

0   1 - 2    1   0  ...

0   0    1 - 2   1  0  ...

...........................................

......................... 0   1 - 2  1

=

æ

è

ç
ç
ç
ç
ç

ö

ø

÷
÷
÷
÷
÷

. (38)

This matrix is most commonly used for aerosol size distribution retrieval (cf., Twomey

[1977], King et al. [1978], King [1982], Nakajima et al. [1996].)  In our studies, we are fol-

lowing the approach of Dubovik et al. [1995] and define smoothing constraints statisti-

cally in the form of the correspondent vector equation given by Eq. (9).  Namely, we

know that the m-th derivatives of function y(x) are limited, in other words, the m-th de-

rivatives are close to zero in a certain degree: dm = 0 – Ddm (Ddm defines deviations from

zero).  Correspondingly, we can write:

0 = Sm y + Ddm. (39)

Using this equation in the case when Ddm = 0 defines the type of function y(x) (constant,

straight line, parabola, etc.) as follows:

dy z

dz
Y z
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   = C ;  

  = B +  C ;  

  =  A +  B  +  C ;2

, (40)

where A, B, C are arbitrary constants.

Eqs. (39)-(40) are helpful for qualitative and, together with Eq. (36), quantitative

consideration of introducing smoothness constraints into retrieval algorithms.  For ex-
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ample, we can always assume that we have a set (Eq. (39)) of virtual measurements of

m-th derivatives of unknown characteristic y(z) (e.g., particle size distribution, etc.).  The

variance of the errors in such a data set can be easily estimated as follows:

e
dm

2

i m i

2

y m
m

m
max m= - ( )( ) = ( ) £ ( )- -Y a z a zz D D2 1 2 1, (41)

where Ym(z) is given by Eq.(40).  The value am
max  is the maximum possible norm of y(x)

m-th derivatives, which can be calculated according to Eq. (36) for most observed vari-

able y(z).  For example, below we will estimate am
max  for the aerosol size distribution

based on climatological data.

The difference between our algorithm and other known aerosol retrieval algo-

rithms (King et al. [1978], Nakajima et al. [1983]) is that we are restricting several func-

tions simultaneously (y(z) = lnx(lnr); y(z) = lnn(l); and y(z) = lnk(l)) and for each func-

tion different values of am (k = 1, 2, 3) and ek  are to be defined.  Indeed, admissible varia-

tions of the size distribution lnx(lnr) = dlnRn/dlnr are expected to be much stronger

than for spectral variations of the real n l( ) and imaginary k l( ) parts of the refractive

index.  Therefore, we should define smoothness vectors fk (and correspondent La-

grange multipliers) in Eq. (9) separately for particle size distribution, and real and

imaginary parts of the index of refraction; i.e., each smoothness vector fk should depend

only from the part of retrieved vector a corresponding to x(lnr), n l( ), or k l( ).  How-

ever, to keep our formulations clear we define a single vector fk (k = 3) in Eq. (9) as the

following composed vector:

f3 = f3(a) + D3 = U3 a + D3 Þ 0

S

S

S

a

a

a

=

æ

è

ç
ç

ö

ø

÷
÷

æ

è

ç
ç

ö

ø

÷
÷

+

æ

è

ç
ç

ö

ø

÷
÷

x

n

k

x

n

k

x

n

k

0 0

0 0

0 0

 

D

D

D

, (42a)

where vectors ax, an  and ak denote parts of the complete vector a, i.e., aT = (ax, an, ak)
T

and matrices Sx, Sn, and Sk denote matrices of the correspondent differences.  The cor-

respondent weight matrix is defined as:
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, (42b)

where 1 is the unit matrix, gn = (en/ex)
2 and gn = (ek/ex)

2 with e… depending on the norm

values of the differences and calculated according to Eq. (41).

Thus, Eqs. (42a) – (42b) account for the fact that both the order of the differences

and the norms a… of correspondent derivatives can be different for particle size distri-

bution and spectral dependence of the real and imaginary parts of the refractive index.

Finally to complete the description of smoothness constraints in our algorithm (i.e., to

define S , e… and g3), we need to evaluate the required orders of the derivatives and

norms a… of those derivatives for the retrieved functions (y(z) = lnx(lnr); y(z) = ln n l( )

and y(z) = ln k l( )).

Smoothness of the Particle Size Distribution

The particle size distribution of tropospheric aerosols may contain several dis-

tinct modes and each mode is most commonly modeled by a log-normal function

[Whitby, 1978, Remer et al., 1997].  Therefore, for evaluating norms a… (Eq. (36)), we will

consider the following function y(z) = lnxk’(lnr):
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To evaluate am
max  we should estimate ak for the most variable function lnxn(lnr).  For the

particle size distribution given by Eq. (43), the norm of the derivatives would increase

with increasing number J of the components and with decreasing standard deviation sj

for each component.  Correspondingly, the size distribution with the largest number of

narrow (the smaller sj the narrower the function) components has the greatest value of

am
max .  Physical processes in the atmosphere most frequently result in a bimodal struc-

ture of the aerosol size distribution [Remer and Kaufman, 1998].  At the same time, the
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appearance of a third mode is also realistic.  For example, a volcanic eruption may pro-

duce optically thick stratospheric aerosol, which adds a stable third additional mode to

the regularly appearing accumulation (small particles; r < 0.6 mm) and coarse (large par-

ticles; r > 1 mm) modes composing tropospheric aerosol [Kaufman and Holben, 1996].

The standard deviation sj of the aerosol size distribution varies depending on the type

of aerosol and the atmospheric conditions.  Tanré et al. [1999] give s = 0.4 for the nar-

rowest aerosol modes.  Probably, in practice the size distributions can be even nar-

rower than those with s = 0.4.  However, we can not expect resolution smaller than the

interval Dlnr = lnri+1 - lnri chosen for defining the linear systems in Eqs. (23)-(26), i.e.,

particle size distribution should be narrower than Dlnr (s = Dlnr).

Thus, to estimate the maximum norm am
max  we calculate the norm of the first,

second and third derivatives for a tri-modal log normal size distribution for two cases

s = 0.4 and s = Dlnr.  The results of these calculations are summarized in Table 1.  Cor-

responding to these calculations, the values of the Lagrange multiplier are found to be

in the range 3.0´10-6 - 3.0´10-3.  It should be noted that Table 1 contains the results of

calculations for the size distribution of particle volume dV/dlnr; however, the values of

am for the logarithmic differences of the second and greater order are the same for all

distributions dRn/dlnr.  This is because the differences Dln(dRn/dlnr) of the second and

greater order are independent of n.  Thus, the logarithms of size and the same smooth-

ness restrictions can be used for the distributions of particle number, radius, area and

volume if these restrictions are applied to the logarithms lnx(lnr).

Smoothness of Spectral Dependence of Complex Refractive Index

To define the parameters gn  = (en/ex)
2 and gk  = (ek/ex)

2, required for determining

weight matrix W3 in Eq. (42b), we need to evaluate derivative norms of spectral de-

pendencies y(z) = lnn(l) and y(z) = lnk(l).  Distinct spectral variability is usually not ex-

pected for both real and imaginary parts of the aerosol particle refractive index.  For
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example, the widely cited paper by Shettle and Fenn [1979] shows practically wave-

length independent complex refractive indices in the spectral interval of interest (440-

1020 nm) for the materials typically composing atmospheric aerosols.  Similarly, aerosol

models by Tanré et al. [1999] assume single constant values of complex refractive index

for the considered spectral interval.  However, in the scientific literature there are mul-

tiple indications of possible spectral selectivity of the refractive index for aerosol parti-

cles [e.g., Ackerman and Toon, 1981; Patterson and McMahon, 1984; Horvath,1993, Dubo-

vik et al., 1998b; Yamasoe et al., 1998].  Therefore, we constrain the spectral variability of

the retrieved complex refractive index to some practically reasonable ranges rather

than to any particular model of the atmospheric aerosol.

For analyzing derivative values we approximate spectral dependencies n l( ) and

k l( ) by exponential functions in a manner similar to Dubovik et al. [1998b]:

n kn kl l l la a( ) ( ) ( ) ( )- -~ ~   and    . (44)

Obviously, the logarithmic derivatives  
m

m
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d
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l
l

 are equal to zero for

m > 1.  Therefore, we will be using first derivatives for constraining the spectral vari-

ability of complex refractive index.  The norms of the first derivatives a1
max  directly re-

late to exponents:  a n n1,
max max

max minln ln= -( )a l l  and  a k1,
max =  a l lk

max
max minln ln-( ) .  We esti-

mate the maximum spectral dependence of the real part of the refractive index

as   0.2a n1,
max = , which corresponds to change from n(440) = 1.6 to n(1020) = 1.33.  The

value of   1.5a k1,
max = , given by Dubovik et al. [1998b] for biomass burning aerosol, is ac-

cepted in our studies as the strongest spectral variability of imaginary part of the com-

plex refractive index (k(440) = 0.04 to k(1020) = 0.011).

It should be noted that the traditional smoothness matrices (e.g., the matrix

given by Eq. (38)) with elements given by integer numbers can not be applied for con-

straining the spectral dependence of the refractive index.  This is because the spectral

interval Dli is not constant in our application.  For example, sky radiances are measured
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by AERONET sun photometers at 4 wavelengths: 440, 670, 870, 1020, i.e., Dli = li+1 - li ¹

const.  Correspondingly, we use smoothness matrices Sn and Sk  in Eq. (42a) which are

constructed for numerical derivatives Dy(z)/ Dz rather than for differences Dy(z), i.e. the

matrices Sn  and Sk  account for the Dli in differences with matrices given by Eq. (38).

The restriction of second derivatives also can be applied for the retrieval of the

spectral dependence of refractive index.  Such a restriction would constraint the refrac-

tive index spectral variability by exponential functions Eq. (44).  However, it would not

restrict the values an and ak  (steep slopes).  This might be insufficient in practice, be-

cause the limited information content of the sun/sky radiance [Dubovik et al., 1999] may

result in retrieval of unrealistically strong spectral selectivity of the refractive index.

Convergence improvements

The procedure given by Eqs. (17)-(19) should provide monotonic and fast con-

vergence of the iterations to the minimum of the quadratic form Y(a) (Eq. (13)).  Equa-

tion (19a) contains terms (on both the right and left sides of the equations) that limit the

length of the correction Dap and help to provide monotonic convergence of minimiza-

tion in a similar manner to the Levenberg-Marquardt method.

As was mentioned in Section 3.1.1, we implement this correction by assuming a

priori constraints on step correction Dap.  Namely, we assume Dâ( )*= 0 + D( Da), and the

matrix W aD  has the same form as the matrix W3 with the difference that the variances

ex
2 , en

2  and ek
2  should be replaced by eD,x

2 , eD,n
2  and eD,k

2 .  The variances eD,x
2 , eD,n

2  and

eD,k
2  are defined depending on the ranges of the variability of particle size distribution,

real and imaginary parts of complex refractive index as follows:

eD,x = 0.5 (lnxmax – lnxmin) » 2.5,

eD,n = 0.5 (lnnmax – lnnmin) » 0.05, (45)

eD,k = 0.5 (lnkmax – lnkmin) » 1.

In this equation we used the following considerations for choosing the maximum and
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minimum values.  The realistic maximum values of x = dV/dlnr (the size distribution of

the particle volume in the total atmospheric column) can be easily expected to be in the

range from 0.005 µm3/µm2 to 0.5 µm3/µm2 [Dubovik et al., 1999].  For the real and

imaginary parts of the aerosol complex refractive index we assume variability ranges

from 1.65 to 1.4 and 0.05-0.005 respectively (for the spectral range: 440-1020 nm).  Also,

the values in Eq. (45) are rounded off to number multiples of 5.

It should be noted that these ranges are only for restricting Dap, i.e., the corre-

spondent values of Dap are not expected to be larger than the length of the above men-

tioned intervals.  Obviously, after several iterations even greater changes can be

achieved.

The definition of the Lagrange multiplier gDa is similar to the one given by Eq.

(15) with the difference that instead of e1 we use the residual 
      
ê2 ap( )  = Y(ap)/(Nf – Na),

i.e.,

g
eD

D

Y
a

a N N
2

2a
ap

p

f a

( ) =
( )

-( )
. (46)

According to this equation the value of the Lagrange multiplier gDa decreases with de-

creasing quadratic form Y(ap).  We have chosen this definition because the linear ap-

proximation in the small vicinity of the solution a’ produces rather accurate Dap and any

restriction on the solution correction Dap is not needed.  Moreover, it may also slow

down the convergence of the iterative process.  Therefore, in our algorithm the restric-

tions on Dap are in effect when ap is far from the solution and they weaken when ap-

proaching the solution a’, i.e., with decreasing Y(ap).

Thus, the a priori constraints on the correction Dap help to implement a mono-

tonic and fast convergence.

5. Summary and illustrations

In Sections 2 and 3 we described the concept of forward modeling and inversion
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strategy.  Section 4 described the details of organizing the inversion algorithm for de-

riving aerosol optical properties from atmospheric radiance measurements by

AERONET sun-sky scanning radiometers.  Namely, two aspects were discussed: the

forward model optimization from an inversion viewpoint and choosing the values of

parameters required for setting up the inversion scheme.  The purpose of Section 5 is to

summarize and illustrate the result of our algorithm development.

The strategy of our development was to make a flexible algorithm that can be

easily adapted to different practical needs and that also can easily be upgraded by new

developments in radiative transfer modeling and numerical recipes.  The possibility of

upgrading an algorithm is assumed in many modern codes and is generally more inter-

esting for the developer than for the user.  Therefore, we will not discuss this aspect

here.  We will emphasize the flexibility in choosing a number of alternatives in imple-

menting the inversion so that the inversion scheme can be easily used with another ra-

diative transfer schemes, or even in other applications.  Correspondingly, we have tried

to make the forward modeling and inversion parts of the algorithm as independent of

each other as possible and we have put significant effort into making the inversion part

of our algorithm rather transparent and changeable.  Therefore, below we will identify

the possible alternatives in setting up the inversion and illustrate the resulting differ-

ences.

5.1. Proposed algorithm and alternative implementations

Here we will discuss the following main questions: (i) ways of representing

measured radiances in the retrieval algorithm; (ii) ways of representing optical charac-

teristics of the aerosol in the retrieval algorithm; and (iii) choosing a matrix or iterative

inversion in implementing the minimization.

Radiances in the retrieval algorithm

As was described in Section 4, we optimize the algorithm by accounting for
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measurement error while fitting aerosol optical thickness and sky radiances.  The cho-

sen settings are summarized in Table 2.  The central point in these settings is the noise

assumption.  We also recommend utilization of log-normal statistics (i.e. we fit the loga-

rithms of optical thickness and sky radiance).  As for alternative noise statistics, the

normal distribution of sky radiance and optical thickness (i.e. we fit the absolute values

of optical thickness and sky radiance) with weight matrices given in Table 2 is the most

reasonable alternative to the assumption of log-normal statistics.  (The values of the

weight matrices, covariances and Lagrange multipliers given in Table 2 for normal dis-

tributions were not discussed in the text, however based on the same concepts they can

easily be derived for the expected errors).

Optical characteristics of aerosol in the retrieval algorithm

The questions of defining the retrieved aerosol characteristics were described in

Chapter 4, and Table 3 summarizes the chosen settings.  This Table shows two main

possibilities we considered: to retrieve logarithms (recommended) or absolute (alterna-

tive) values of aerosol characteristics (x(lnri), n(li) and k(li)).  For each case, Table 3 de-

scribes the a priori constraints for all of the retrieved aerosol characteristics.  For the

particle size distribution and the wavelength dependence of the imaginary part of re-

fractive index we indicate possibilities of constraining the differences (derivatives) of the

first, second or third orders.  According to our analysis, these constraints are approxi-

mately equivalent.  It is our expectation that the differences of the third order (for parti-

cle size distribution) can be more efficient in practice, because it allows for the highest

variability of x(lnri).  However, this statement should be verified in practice and by nu-

merical tests.

Matrix and iterative inversion

As discussed in Section 3, statistical optimization requires the minimization of the

quadratic form and various mathematical techniques can be employed for implement-
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ing this minimization (see Section 3.2).  In our algorithm we include two main alterna-

tives: using matrix inversion by means of the SVD technique (Section 3.2.1) or by using

combined iterations as it is described in Section 3.2.2.  Also, we include the possibility of

algorithm convergence improving in a manner similar to the Levenberg-Marquardt

method.  Namely, we include a priori constraints on the solution correction Dap at each

p-step as described in Section 4.

5.2. Illustrations

Numerical tests

The algorithm is focused on the simultaneous retrieval of particle size distribu-

tion and wavelength dependent refractive index (real and imaginary parts).  The princi-

pal difference with known approaches (e.g., Wendish and von Hoyningen-Huene [1994];

Yamasoe et al. [1998]) is that we retrieve all aerosol characteristics (x(lnri), n(li) and k(li))

at once by simultaneous fitting measurements of optical thickness and the angular dis-

tribution of sky radiances in the entire available spectral range.  To succeed in such a

global fitting we had to employ a very elaborate inversion scheme, which has been de-

scribed and which allows us a significant degree of flexibility in realizing the inversion.

Correspondingly, the purpose of this Section is to illustrate how successful the inversion

scheme works and what kind of results can be expected from using the different inver-

sion options.

We have conducted a large number of numerical tests with the purpose of veri-

fying the efficiency of the algorithm and checking the results regarding the settings of

the inversion algorithm.  Each illustration displayed below illustrates the phenomenon

that was distinctly observed in a large number of numerical tests.

First, we have tested the efficiency of algorithm convergence and the sufficiency

of information content for successful retrieval of all aerosol characteristics (x(lnri), n(li),

and k(li)).  In this test we simulated aerosol optical thickness and the angular distribu-
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tion of sky radiance at several wavelengths for an assumed particle size distribution and

complex refractive index.  Then we inverted the simulated optical thickness and sky-

radiance and compared the retrieved particle size distribution and complex refractive

index with the assumed values.  In addition, taking into account the importance of in-

formation about aerosol absorption for estimating aerosol radiative forcing (see Kauf-

man et al. [1997]), we evaluated the agreement between values of single scattering al-

bedo (w l t l t l0
aer

scat
aer

ext
aer( ) = ( ) ( )) obtained for assumed and retrieved aerosol characteris-

tics x(lnri), n(li) and k(li).  All tests were conducted for the measurement scheme

(wavelengths, zenith and azimuth angles of observation, etc.) established for AERONET

radiometers (for details see Holben et al. [1998]).  The tests have shown that both real

and imaginary parts of the complex refractive index can be successfully retrieved to-

gether with particle size distribution, if no noise is introduced in the simulated radiance.

In a majority of cases the errors did not exceed 20% for k(li), 0.02 for n(li), 0.015 for

w l0
aer ( ), and 10% for dV/dlnr for particles with sizes in the range from 0.1 to 7 mm (the

errors increase on the tails of the retrieved particle size distribution).  The results remain

good even in the presence of random noise.  For example, Figs. 1 and 2 illustrate the

results of our test for retrieving biomass burning aerosol optical properties modeled

with wavelength dependent real and imaginary parts of the refractive index.  A bi-

modal log-normal size distribution was assumed for this illustration according to the

biomass burning aerosol model given by Remer et al. [1998].  The wavelength depend-

ence of n(li) was assumed according to the values of the real part of the refractive index

retrieved by Yamasoe et al. [1998] for smoke in Brazil.  The wavelength dependence of

imaginary part of the refractive index was assumed following Dubovik et al. [1998b] for

k(li) of Brazilian  smoke with pronounced wavelength dependence of absorption (“arti-

ficial soot”).  The algorithm computed the retrievals shown in Figures 1 and 2 with the

settings recommended in Tables 2 and 3.

According to performance tests, using the logarithmic transformation is a critical
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aspect of our algorithm (for both fitting logarithm of radiance and retrieving loga-

rithms of x(lnri), n(li) and k(li)).  Namely, by using absolute values (i.e., settings sug-

gested in Tables 2 and 3 as alternatives) we could not succeed with a stable convergence

of the algorithm to the solution.  In this case, the success of the retrieval was strongly

dependent on the choice of the initial guess.  In contrast, using logarithms we achieved

good retrievals starting with the same initial guess (dV(r)/dlnr = 0.0001, n(li) = 1.50, and

k(li) = 0.005) in all cases.  In situations where the refractive index is known and fixed in

the retrieval, using both recommended and alternative settings gave good retrievals for

the case with no noise added.  However, if some random noise was added to the simu-

lated radiances, the retrieval using logarithms was superior for the ranges of both very

small and large particle size.  Figures 3-5 illustrate the results of such retrievals for three

different cases: large particles dominate (Figure 3); small particles dominate (Figure 4)

and the presence of small and large particles is comparable with a third minor mode

present in the middle range of particle size (Figure 5).

It is important to notice that Figures 3-5 also illustrate the fact that in the pres-

ence of noise we were obtaining in general more stable retrievals implementing simul-

taneous retrieval of size distribution and complex refractive index than by retrieving

only size distribution (with refractive index fixed to the correct one).  This result can be

explained by the fact that refractive index is fixed and then only the size distribution can

be changed during the retrieval thus the fitting of noisy data forces the size distribution

to compensate for all of the errors in radiance.  Alternatively, if both size distribution

and refractive index are retrieved simultaneously then errors in measured radiances

will be simulated by errors in the size distribution only partially, because some of them

will be compensated by retrieval errors in refractive index.  These errors in the refrac-

tive index retrieved under noisy conditions are acceptable.  For example, the errors in

refractive index for the tests shown on Figures 3-5 did not exceed 20% for k(li) and 0.02

for n(li).



49

We have conducted a series of tests to verify our algorithm and settings regard-

ing the smoothness constraints.  Indeed, using overdetermined and/or inadequate con-

straints may result in smoothing out real (and possibly important) features of the re-

trieved aerosol characteristics (in particular the particle size distribution).  The tests have

shown that the values of the Lagrange multipliers, recommended in Table 3, allow one

to obtain satisfactory results for any mono-, bi- or tri-modal aerosol particle size distri-

bution.  Every singular volume equivalent mode of particle size distribution was as-

sumed in the tests as the narrowest one given by Tanré et al. [1999].  For example, Fig. 5

shows successful retrieval of a small feature in the size distribution (a third intermediate

size aerosol mode), which was obtained with the constraints similar to the ones applied

in the tests without this feature (Figures 3-4).

Figures 6-8 illustrate the retrievals of particle size distribution with constraining

first, second or third derivatives.  The results look good for the values of the Lagrange

multipliers given in the Table 3.  Moreover, even using significantly higher values of g 

(up to g  = 0.01) gives appropriate results for all cases shown.  It is interesting to note

that the intercomparison of retrieval results obtained with different constraints (on

variations of first, second or third differences) did not show any dramatic difference for

g £ 0.01.  For higher values of the Lagrange multiplier, a priori constraints forced the re-

trieved particle size distribution to have an a priori prescribed shape (see Eq.(40)): hori-

zontal line (for first differences), arbitrary straight line (for second differences) and pa-

rabola (for third differences).  In spite of the fact that all constraints allowed us to get

satisfactory retrievals (for g £ 0.01), we have concluded that using second or third dif-

ferences is more appropriate for the retrieval particle size distribution.  First, according

to the general formulation, the restricting of first differences is the most severe restric-

tion on particle size distribution (since this a priori assumes that the solution is a hori-

zontal straight line).  Second, the values of the Lagrange multiplier of constraining the

differences of the second or higher order are the same for size distributions of volume,
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area, radius or number of particles as for the case when we retrieve the logarithms of

dRn/dlnr in the grid points ri chosen with any equal step Dlnr = lnri+1 – lnri = const.  This

can be easily illustrated using Eqs. (24) and (36b) on an example of the size distributions

of particle volume and number:

ln( ( ) / ln ) ln( ) ln( ) ln ln( ( ) / ln )
ln( ( ) / ln ) ln ln( ( ) / ln )

ln( ( ) / ln ) ln( ( ) / ln )

dV r d r r r dN r d r
dV r d r r dN r d r

dV r d r dN r d r

i+1 i i+1

i i
m

i
m

i  (for m 2)

= + + + Þ

Þ
= - +

= ³

4 3 3
1 1

p D
D D D

D D
.

It should be noted that all illustrations show the results for the retrieval of volume par-

ticle size distribution because dV/dlnr is a standard product of AERONET (Holben et al.

[1998]).  However, the retrieval of any other kind of particle size distribution dRn/dlnr is

also assumed in the described algorithm and can be used depending on the user need.

Also, Eq. (24) can be applied rather successfully for transforming the dRi/dlnr to any

other distribution dRn/dlnr; however, in general, the direct retrieval of the needed

dRn/dlnr gives slightly better accuracy.

The final illustration of the results of our numerical tests relates to the use of it-

erative versus matrix inversion (the methods outlined in Section 3.2.1).  Figure 9 shows

the retrievals of particle size distribution obtained by applying an iterative inversion

and a SVD technique for matrix inversion (with and without applying constraints on

Dap).  The inversions were obtained without using any a priori smoothness constraints

on the solution and without adding any noise to the simulated radiance.  We could ob-

tain good convergence of Y(ap) to a minimum in all three cases and the results were

equally good for retrieval of k(li) and n(li).  However, the results of particle size distri-

bution retrievals were significantly different.  Namely, in spite of the fact that the SVD

inversion always gives an inverse matrix, it forces the appearance of physically unrealis-

tic (but optically indistinguishable) oscillations (Figure 9).  Using an iterative inversion

always gives an appropriate solution without any inversion modification, however it

takes a longer time for convergence.  The SVD technique coupled with the Levenberg-
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Marquardt type constraints on Dap, included according to Eqs. (45)-(46), appeared to be

practically the most efficient way of implementing the inversion.  Indeed, the retrieval

result is rather smooth and the retrieval implementation is faster than for the iterative

inversion.  Thus, we have adopted the SVD technique with constraints on Dap (Eqs. (45)-

(46)) as the recommended way of implementing the inversion in our algorithm.

Application to real measurements

The purpose of our development is to make the code perform a reliable inver-

sion of the real measurements.  However, we have thus far illustrated the performance

of the inversion by inverting simulated atmospheric radiances.  The difference between

simulated and real measurements may contain various uncertainties that can affect the

retrieval results.  The random noise used in our tests does not reflect the diversity of all

uncertainties present in real data.  Correspondingly, to foresee the accuracy of inverting

the real data some special analysis is needed.  However, such analysis requires exten-

sive studies related to information content of particular measurements rather than to

the design of the inversion.  The quality assessments of aerosol optical properties re-

trieved using AERONET spectral optical thickness and atmospheric radiance measure-

ments are given in the paper by Dubovik et al. [1999].  In the current paper we limit our-

selves to a single example showing the practical capability of simultaneous retrievals of

aerosol particle size distribution and wavelength dependent refractive index from sun

and sky radiance obtained using AERONET radiometers.  For this illustration we have

chosen observations of different kinds of aerosols (biomass burning and urban aerosol)

with similar wavelength dependence of optical thickness, a = 1.5 (t(l) ~ l-a).  Figures

10-11 show the retrieval results for urban aerosol measured in hazy conditions at God-

dard Space Flight Center and biomass burning smoke measured in Cuiabá (Brazil) in

different years (1993 and 1995).  The particle size distribution is dominated by fine parti-

cles in all cases.  At the same time, some differences in dV/dlnr also can be clearly seen.
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It is important to note that the retrievals show the very strong differences between

biomass burning and urban aerosols in the values of real and imaginary parts of the re-

fractive index.  Indeed, n for urban aerosol at GSFC ranges between 1.33 and 1.40 (i.e.,

close to the values of n for water), whereas smoke retrieved values of n are significantly

higher than 1.4.  This may be the results of much greater hygroscopic growth of parti-

cles with increasing humidity for mid-Atlantic US pollution versus Brazilian smoke

[Kotchenruther and Hobbs, 1998].  As expected, the values of imaginary part of the re-

fractive index are more than ten times higher for smoke than for urban aerosol.  The

values of single scattering albedo are close to unity for urban aerosol and significantly

smaller for smoke.  Moreover, the wavelength dependencies of w l0
aer ( ) obtained for

smoke in 1993 and 1995 years are different for some cases (it slightly increases with

wavelength for aged smoke in 1995).  This result qualitatively agrees with the results of

the w l0
aer ( ) retrievals obtained by independent techniques also for Cuiabá, Brazil in 1995

(Chu et al. [1999]; Martins et al. [personal communication]; Dubovik et al. [1998b]).  The

retrieved k(li) for observations of smoke at Cuiabá, Brazil in 1995 shows a strong de-

crease with wavelength, which is in good agreement with the results of the discussion

given in the paper by Dubovik et al. [1998b].  It should be noted that retrievals by our

algorithm obtained for Cuiabá, Brazil in 1995 for some days other than illustrated in

Figures 10-11 also dominantly show k(li) decreasing with wavelengths for aged smoke;

however w l0
aer ( ) is almost wavelength independent.

Thus, these examples have shown that by applying the developed code we were

able to derive more detailed information from sun and sky radiance measurements

from AERONET radiometers than with procedures that were previously employed for

the retrieval of aerosol optical properties from AERONET measurements (see Holben et

al. [1998]).
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6. Conclusion

A flexible algorithm for inverting complex sets of measured radiative and a priori

known aerosol characteristics has been developed and implemented for the interpreta-

tion of ground-based measurements of sun and sky radiance.  The algorithm retrieves

the particle size distribution over a wide range of sizes (0.05-15 µm) together with spec-

trally dependent complex refractive index and single scattering albedo.

To achieve flexibility of the algorithm, we considered forward modeling and

numerical inversion as two complementary but relatively independent components of

the retrieval algorithm.  The modeling of atmospheric radiance is performed by pub-

licly available radiative transfer codes of discrete ordinates for a multi-layered, plane-

parallel atmosphere.  Assuming aerosol particles are spheres includes the aerosol mi-

crostructure.  The possibility of retrieving different kinds of particle size distributions

(volume, area, radius or number) is discussed and included in the algorithm.

The strategy of statistical optimization of multi-source data, such as measure-

ments of different types as well as a priori knowledge, has been elaborated point by

point.  We have explicitly discussed differences in the accuracy of input data and non-

negativity of measured and retrieved parameters in the optimized inversion.  We out-

lined possible alternatives of operating with absolute values of sun and sky radiance or

their logarithms by assuming normal or log-normal noise distributions in the radiance

measurements.  The associated possible covariance matrices are presented.  Similarly,

we have emphasized the differences of retrieving logarithms or absolute values of par-

ticle size distribution and real and imaginary parts of the refractive index.

The statistical concept of evaluating values of the Lagrange multiplier for includ-

ing both accessory measurements and a priori constraints is described.  This concept has

been applied to determining weights of the measurements of spectral optical thickness

and angular measurements of sky radiance in our procedure of simultaneous fitting of

these characteristics.  The results of this analysis are summarized in Table 2.  Based on
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the same concept, we defined values of Lagrange multipliers for all a priori constraints

employed in our algorithm.  Namely, we have utilized constraints of variability on the

particle size distribution and constraints on the spectral variability of real and imaginary

parts of refractive index.  For this purpose, we have applied limitations on the norm of

the first, second and third differences of the particle size distribution.  In the same way

we restricted the norm of the first and second derivatives of the variability of refractive

index with wavelength.  For evaluating the values of the correspondent Lagrange mul-

tiplier we analyzed the maximum changes in atmospheric particle size distribution, as

well as maximum spectral variability of the refractive index (both real and imaginary

parts).  Table 3 summarizes the results of applying a priori constraints.

Tables 2 and 3 show the recommended (the best according to our analysis) and

the alternative (which can be appropriate in some situations) setting for inverting

measurements of spectral optical thickness and sky radiance together with a priori con-

straints.  Table 3 also shows alternative a priori constraints for limiting differences (de-

rivatives) of different orders.  According to our considerations, these constraints pro-

vide almost equivalent efficiencies of retrieval.  Nevertheless, due to a number of rea-

sons, we recommend using second or third differences for the smoothing of retrieved

particle size distributions.

We have examined the practical efficiency of implementing numerical fitting by

diverse mathematical techniques.  Particular attention has been devoted to considering

the possible differences between methods using matrix and iterative inversion.  Im-

proving the convergence of nonlinear fitting by applying Levenberg-Marquardt or

steepest descent types of iterations have been studied.  As a result we have outlined

two alternatives: (i) combined linear iterations or (ii) matrix inversion using singular

value decomposition.  Both of these methods give reliable convergence.  The matrix in-

version gives a faster result but requires organizing the Levenberg-Marquardt type it-

erations for obtaining a stable result.
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We have done a series of numerical tests for both checking the efficiency of the

algorithm in general and for each particular algorithm setting.  In the tests we inverted

simulated ground-based measurements of sun and sky radiance at the wavelengths and

angles defined according to the measurement protocol established for AERONET radi-

ometers.  The results have shown that both particle size distribution and wavelength

dependent real and imaginary parts of the refractive index can be derived, with reason-

able accuracy, from the ground-based measurements of sun and sky radiance.  Moreo-

ver, these tests have shown that the method has a sensitivity large enough for observ-

ing important minor features in spectral dependencies of the real and imaginary parts

of the aerosol refractive index and, correspondingly, in the spectral dependence of sin-

gle scattering albedo.  The illustrations are given in the text and in Figs 1-2.  Figures 9-10

illustrate inversion of real measurements obtained by AERONET radiometers.  Detailed

analysis of the stability of retrieval results to the various simulated errors is given in the

paper by Dubovik et al. [1999].

The retrieval algorithm is currently being employed for operational use by the

AERONET project.  The results of these retrievals can be found on the AERONET pro-

ject web page: http://aeronet.gsfc.nasa.gov:8080.

Appendix A:  Derivation of linear correction Dâp  with noise optimization

In order to define a linear correction Dâp , we can consider Dfk(Dap) as a linear

functions of Dap.  Neglecting all terms of second or higher order in Eq. (18), we can

write:

f a f a U a a f U a
a ak
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The correction Dâp  can be found with accounting for presenting noise as a value Dâp

corresponding to the minimum of the quadratic form Y( Dâp) (defined in a similar

manner to Eq. (13)):
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The minimum of this quadratic form corresponds to the vector Dâp  which yields a zero

gradient vector Ñ ( )Y Dap  :
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The gradient of the quadratic form Y( Dâp) is a sum of the gradients of the following K

terms:
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The gradient of each quadratic form Ñ ( )Y Dk
pa  can be written as follows:
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Using Eqs. (4A)-(5A) we can write Eq. (3A) as below:
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The detailed derivation of equation (6A) (for the case of K=1) can be found elsewhere in

numerous books on statistical estimations (cf. Seber [1977]), Tarantola [1987]).

Thus, deriving Dâp  from Eq. (6A) and using it to obtain âp+1  by means of Eq. (17a) per-

mits the definition of a nonlinear process for deriving a statistically optimum solution of

Eq. (9).

Appendix  B:  Including a priori estimates Dâ* in the retrieval of Dâp

In order to improve the convergence of the retrieval process (given by Eqs. (17)

and (6A)) we can  limit the length of Dâp  by assuming a vector of a priori estimates for

Dâ*, i.e. we add one more constraining equation:

D D DDa a a
* p= + , (1B),

where DDa  are normally distributed errors with zero means and covariance matrix C aD .



57

Therefore, the PDF of the estimates Dâ* is defined as:

P D D D D D DDa a a a C a aa
p * p * T p * exp -

1
2

( ) -( ) ( ) -( )æ
è

ö
ø

-
~

1
. (2B)

Since, Eq. (1B) restricts only the value of the correction Dâp  but not the value of the un-

known parameter âp  itself, this constraint is only important for obtaining corrections

Dâp .  In order to be consistent with this added constraint we add an additional K+1th

term to the quadratic form Y( Dâp ) and instead of Eq. (4A) we can write:

Ñ ( ) = Ñ ( ) + Ñ ( )
=

åY D Y D Y DD Da a aa a
p

k k
p

k

K
p   

1
2

1
21

g g , (3B)

where

Y D D D D DD Da aa a a W a a( ) = -( ) ( ) -( )-
 p * T p *1

. (4B)

The gradient of this quadratic form can be obtained using an expression similar to Eq.

(5A):

Ñ ( ) = ( ) - ( ) ( )- -
Y D D DD D Da a aa W a W ap p *   2 2

1 1
. (5B)

Thus, the vector Dâp  which minimizes the quadratic form Y( Dâp ) corresponds to the

solution of the following equation:

     

                                                  

k k,

T

k k,
k

K
p

k k,

T

k k
*

k

K
*

p p

p

g g

g g

U W U W a

U W f W a 0

a a a a

a a a

( ) ( ) ( )é
ëê

ù
ûú

+ ( )æ

è
ç

ö

ø
÷ -

- ( ) ( ) ( )é
ëê
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+ ( ) =

- -

=

-

=

-

å

å

1 1

1

1

1

1

D D

D D

D

D D

. (6B)

Appendix C:  Derivation of Chahine’s formula

The method of Chahine [1968] involves the solution of the linear system

I x K x( ) =   by non-linear iterations (  
i

p 1

i

p
 i

*
i
px x I I+

=
æ
è

ö
ø ).  The utility of this method is lim-

ited by the fact that the matrix K is square (i.e. the numbers of initial characteristics I j

and unknowns xi are equal) , when initial characteristics I j and unknowns xi are posi-

tively defined.  Also, the matrix K must be square and diagonally dominant in order
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that convergence be achieved.  In Chahine’s iterative approach, the solution vector is re-

stricted to positive and smooth values, thereby eliminating the negative and highly os-

cillatory solutions typical of linear matrix inversion.

Analyzing Chahine’s formula, one can see that this formula is very different with

both matrix inversion by Eqs. (20)-(21) and linear iterations by Eq. (22).  Namely,

Chahine’s formula is non-linear and includes multiplication and division instead of addi-

tion and subtraction in the linear methods.  The concept of statistical optimization of the

inversion and retrieval of non-negative values (Section 4.1.2) prescribes that the initially

linear system should be solved in logarithmic space:

I K x* ln ln ln , ln ,..., ln= Þ = ( )*        j j n
I I x x x

1 1
. (1C)

This non-linear system can be solved by Newtonian iterations similar to Eq. (20a):

ln ˆ ln ˆ ln ˆ

ln ˆ ln ln *

x x x

x U I I

p 1 p p

p
p

-1 p

 -   ;+ =

= ( ) -( )
D

D

 . (2C)

Matrix Up contains the first derivatives, which for I x K x( ) =  can be expressed as follows:

U
x

p ji

j

i

ji

j
p i

p ji i
p

jk k
p

k=1

nln
  

 

 p

{ } = = =
å

¶

¶

ln

ˆ

I

x

K

I
x

K x

K x
. (3C)

Using Chahine’s condition of a diagonally dominant matrix K, we can now approximate

Up by the unit matrix, i.e.

for  >>   ,  jj jj j p  K K ¢¹ »U 1. (4C)

Substituting matrix (4C) in Eq.(2C) we arrive at the formula proposed by Chahine

[1968]:

ln ˆ ln ˆ ln ln *x x I Ip 1 p p

i

p 1

i

p
 i

*

i
p

 -    + +
=

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

= -( ) Þ x x I

I
. (5C)

Chahine’s method converges for any diagonally dominant matrix K (i.e.   >  jj jj jK K ¢¹ ),

although the approximation for Eq. (4C) is correct only for a diagonally dominant ma-

trix K where the diagonal dominance is strong (i.e.    jj jj jK K>> ¢¹ ).  In this regard, the
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non-linear univariate relaxation of Chahine is formally similar to the standard linear

Gauss-Seidel algorithm used for solving systems of equations and which always con-

verges if the matrix K is diagonally dominant (e.g. see Ortega [1988]).

Appendix D:  Statistical derivation of the Twomey-Chahine formula

The generalization of Chahine’s formula was the objective of a number of inver-

sion studies, because the convergence conditions associated with that method (square

and diagonally dominant matrix K) seriously restrict its application.  The absence of a

clear strategy which exploits the added information content of a priori and accessory

data is an additional reason for seeking out alternatives to the Chahine technique.

The first non-linear Chahine’s like formula (which is widely known in atmos-

pheric studies) was proposed by Twomey [1975] for solving linear overdetermined sys-

tem I x K x( ) =   (m > n):

x x
I

I
Ki i

j
*

j
p ji

j=1

m
p+1 p  1 +      = -

æ

è
ç

ö

ø
÷

æ

è
ç

ö

ø
÷Õ 1 ˜  , (1D)

where K̃ ji  denotes the elements of matrix K which are scaled to be less than unity.  Be-

low, we do not repeat the original methodology for deriving these iterations, (which

can be found in Twomey [1975,1979]).  Rather we try to understand the Chahine ap-

proach in a fashion consistent with the idea of the present paper (Section 3) inasmuch as

we consider the solution as a noise optimization procedure.  For positively defined Ij

and xi we accordingly assume a log-normal noise distribution.  The solution of the sys-

tem I x K x( ) = ( ) +´m n   D  in logarithmic space then corresponds to the minimum of the

quadratic form:

Y ln ln ln ln lnlnx I I W I II
p p * T

 
p *   ( ) = -( ) -( )( )-1

2
1 . (2D)

According to the discussion in Section 3.2 the minimum of the above residual can be ob-

tained by the Levenberg-Marquardt procedure and can be easily reduced to the steep-
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est descent method Eq. (22b):

ln ˆ ln ˆ ln ˆ ln lnln
*x x x U W I Ix I

p 1 p p
=

p p
p
T

 
p

  -  t   -  t  p+ ( ) ( )-
= Ñ -( )Y

1 . (3D)

Equation (3D) is already quite similar to Chahine like iterations, since it restricts the solu-

tion to be positively defined and since no complicated matrix inversion is involved (the

weight matrix is diagonal in most of cases).  To emphasize the similarity between Eq.

(3D) and Eq. (1D) we rewrite Eq. (3B) in terms of xi  and I j:

ˆ ˆ ˜ ˆ ˜x x K I I x K I Ii
p 1

i
p p

ji j
*

j
p

j=1

m

i
p p

ji j
*

j
p

j=1

m

 exp t   ln - ln  exp t   ln - ln+ = ( )æ

è
ç

ö

ø
÷ = ( )( )å Õ , (4D)

where

˜
lnK U W I= ( )-

p
T 1

. (5D)

For an appropriate initial guess of ln - lnj
*

j
pI I( )  (which must be < 1), Eq. (28a) can be ap-

plied We can, as well, approximate the exponents in Eq. (5D) by the two first terms of a

Taylor expansion ( exp( )D D Da a a= + + ( )1 2o ).  Consequently, Eq. (5D) can be transformed

into the form of Eq.(1D):

ˆ ˆ ˜ ˆ ˜x x K
I I

I
x

I

I
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p 1
i
p p
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*

j
p

j
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è
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ø
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æ

è
ç

ö

ø
÷Õ Õ 1 . (6D)

It should be noted that according to Eq. (5D) the matrix K̃ U= p
T  given the common as-

sumption of a unity matrix being used as the weight matrix ( W 1Iln = , see Table 2).  The

elements of this matrix are naturally restricted to be less that unity (see Eq. (3C)).  The

multiplier t p  can be considered as a Levenberg-Marquardt multiplier, and can accord-

ingly be chosen, in a manner similar how it is performed in Levenberg-Marquardt

method, ( t p£ 1) in order to provide monotonic convergence.  Similar coefficients or op-

erations restricting changes of parameters at each step were used in applying Eq. (1D)

to concrete inversions (Trakhovsky  and Shettle [1986],  Dubovik et al. [1995]).
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Figure captions

Fig.1. The results (particle size distribution) of the sensitivity test on aerosol optical

properties retrieval from simulated sky-radiance and optical thickness both

without and with random noise added. Particle size distribution dV/dlnr for

biomass burning aerosol [Remer et al., 1998] is modeled by a bi-modal log-

normal function with parameters: rv1 = 0.132 mm; rv2 = 4.5 mm; s1 = 0.4, s2 =

0.6; Cv1/Cv2 = 4 (text(440) = 0.5).

Fig. 2. The results (single scattering albedo, real and imaginary parts of refractive in-

dex) of the sensitivity test on aerosol optical properties retrieval from simu-

lated sky-radiance and optical thickness both without and with random noise

added. Real part of the real part of refractive index for biomass burning aero-

sol is modeled according to the results by Yamasoe et al. [1998]: n(440) = 1.53,

n(670) = 1.55, n(870) = 1.59, n(1020) = 1.58.

Fig.3. Numerical test results of the comparison of retrievals of size distribution by

three different approaches (size distribution dominated by large particles),

where the radiance is perturbed by random noise: (a) aerosol particle size dis-

tribution retrieval (refractive index is fixed) without logarithmic transforma-

tion (f1(Q;l) = I(Q;l)); f2(l) = t(l) and ai = dV(ri)/dlnr); (b) aerosol particle size

distribution retrieval (refractive index is fixed) under logarithmic transforma-

tion (f1(Q;l) = lnI(Q;l)); f2(l) = lnt(l) and ai = ln(dV(ri)/dlnr)); (c) aerosol parti-

cle size distribution retrieval (refractive index is retrieved) under logarithmic

transformation (f1(Q;l) = lnI(Q;l)); f2(l) = lnt(l) and ai = ln(dV(ri)/dlnr)).

Fig.4. Same as Fig. 3 but for an aerosol size distribution dominated by small parti-

cles.

Fig.5. Same as Fig. 3 but with an aerosol size distribution where large and small par-

ticles are comparably represented with a minor presence of particles in the

middle size range.
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Fig. 6. The illustration of size distribution retrieval results with constraining the first

differences of ai = ln(dV(ri)/dlnr).

Fig. 7. The illustration of size distribution retrieval results with constraining the sec-

ond differences of ai = ln(dV(ri)/dlnr).

Fig. 8. The illustration of size distribution retrieval results with constraining the third

differences of ai = ln(dV(ri)/dlnr).

Fig. 9. An illustration of using different mathematical techniques for minimization

(no a priori constraints are used).

Fig. 10. An application of the algorithm for particle size distribution retrieval from

sky-radiance and optical thickness measured by AERONET. The values of

plotted particle size distribution are scaled to the values corresponding to

t(440) = 1. The illustrated retrievals were obtained for the observations with

similar wavelength dependence of optical thickness (a = 1 5. ).

Fig. 11. An application of the algorithm for single scattering albedo, real and imagi-

nary parts of refractive index retrieval from sky-radiance and optical thickness

measured by AERONET.
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